Documentation

Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero

Localizations of commutative monoids with zeroes #

If S contains 0 then the localization at S is trivial.

theorem Submonoid.IsLocalizationMap.map_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {F : Type u_4} [FunLike F M N] [MulHomClass F M N] {f : F} (hf : S.IsLocalizationMap f) :
f 0 = 0
theorem Localization.mk_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} (x : S) :
mk 0 x = 0
@[instance_reducible]
Equations
theorem Localization.liftOn_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {p : Type u_4} (f : MSp) (H : ∀ {a c : M} {b d : S}, (r S) (a, b) (c, d)f a b = f c d) :
liftOn 0 f H = f 0 1
@[simp]
theorem Submonoid.LocalizationMap.sec_zero_fst {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {f : S.LocalizationMap N} :
f (f.sec 0).1 = 0
noncomputable def Submonoid.LocalizationMap.lift₀ {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) :

Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M and a map of CommMonoidWithZeros g : M →*₀ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

Equations
  • f.lift₀ g hg = { toFun := (↑(f.lift hg)).toFun, map_zero' := , map_one' := , map_mul' := }
Instances For
    theorem Submonoid.LocalizationMap.lift₀_def {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) :
    (f.lift₀ g hg) = (f.lift hg)
    theorem Submonoid.LocalizationMap.lift₀_apply {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] {P : Type u_3} [CommMonoidWithZero P] (f : S.LocalizationMap N) (g : M →*₀ P) (hg : ∀ (y : S), IsUnit (g y)) (x : N) :
    (f.lift₀ g hg) x = g (f.sec x).1 * ((IsUnit.liftRight ((↑g).restrict S) hg) (f.sec x).2)⁻¹

    Given a Localization map f : M →*₀ N for a Submonoid S ⊆ M, if M is a cancellative monoid with zero, and all elements of S are regular, then N is a cancellative monoid with zero.

    theorem Submonoid.LocalizationMap.map_eq_zero_iff {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) {m : M} :
    f m = 0 ∃ (s : S), s * m = 0
    theorem Submonoid.LocalizationMap.mk'_eq_zero_iff {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) (m : M) (s : S) :
    f.mk' m s = 0 ∃ (s : S), s * m = 0
    @[simp]
    theorem Submonoid.LocalizationMap.mk'_zero {M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) (s : S) :
    f.mk' 0 s = 0