Quotients of groups by normal subgroups #
This files develops the basic theory of quotients of groups by normal subgroups. In particular it proves Noether's first and second isomorphism theorems.
Main statements #
QuotientGroup.quotientKerEquivRange
: Noether's first isomorphism theorem, an explicit isomorphismG/ker φ → range φ
for every group homomorphismφ : G →* H
.QuotientGroup.quotientInfEquivProdNormalQuotient
: Noether's second isomorphism theorem, an explicit isomorphism betweenH/(H ∩ N)
and(HN)/N
given a subgroupH
and a normal subgroupN
of a groupG
.QuotientGroup.quotientQuotientEquivQuotient
: Noether's third isomorphism theorem, the canonical isomorphism between(G / N) / (M / N)
andG / M
, whereN ≤ M
.QuotientGroup.comapMk'OrderIso
: The correspondence theorem, a lattice isomorphism between the lattice of subgroups ofG ⧸ N
and the sublattice of subgroups ofG
containingN
.
Tags #
isomorphism theorems, quotient groups
The induced map from the quotient by the kernel to the codomain.
Equations
- QuotientGroup.kerLift φ = QuotientGroup.lift φ.ker φ ⋯
Instances For
The canonical isomorphism G/(ker φ) ≃* H
induced by a homomorphism φ : G →* H
with a right inverse ψ : H → G
.
Equations
- QuotientGroup.quotientKerEquivOfRightInverse φ ψ hφ = { toFun := ⇑(QuotientGroup.kerLift φ), invFun := QuotientGroup.mk ∘ ψ, left_inv := ⋯, right_inv := hφ, map_mul' := ⋯ }
Instances For
The canonical isomorphism G/(ker φ) ≃+ H
induced by a homomorphism
φ : G →+ H
with a right inverse ψ : H → G
.
Equations
- QuotientAddGroup.quotientKerEquivOfRightInverse φ ψ hφ = { toFun := ⇑(QuotientAddGroup.kerLift φ), invFun := QuotientAddGroup.mk ∘ ψ, left_inv := ⋯, right_inv := hφ, map_add' := ⋯ }
Instances For
The canonical isomorphism G/⊥ ≃* G
.
Equations
Instances For
The canonical isomorphism G/⊥ ≃+ G
.
Equations
Instances For
The canonical isomorphism G/(ker φ) ≃* H
induced by a surjection φ : G →* H
.
For a computable
version, see QuotientGroup.quotientKerEquivOfRightInverse
.
Equations
Instances For
The canonical isomorphism G/(ker φ) ≃+ H
induced by a surjection φ : G →+ H
.
For a computable
version, see QuotientAddGroup.quotientKerEquivOfRightInverse
.
Equations
Instances For
If two normal subgroups M
and N
of G
are the same, their quotient groups are
isomorphic.
Equations
- QuotientGroup.quotientMulEquivOfEq h = { toEquiv := Subgroup.quotientEquivOfEq h, map_mul' := ⋯ }
Instances For
If two normal subgroups M
and N
of G
are the same, their quotient groups are
isomorphic.
Equations
- QuotientAddGroup.quotientAddEquivOfEq h = { toEquiv := AddSubgroup.quotientEquivOfEq h, map_add' := ⋯ }
Instances For
Let A', A, B', B
be subgroups of G
. If A' ≤ B'
and A ≤ B
,
then there is a map A / (A' ⊓ A) →* B / (B' ⊓ B)
induced by the inclusions.
Equations
- QuotientGroup.quotientMapSubgroupOfOfLe h' h = QuotientGroup.map (A'.subgroupOf A) (B'.subgroupOf B) (Subgroup.inclusion h) ⋯
Instances For
Let A', A, B', B
be subgroups of G
. If A' ≤ B'
and A ≤ B
, then there is a map
A / (A' ⊓ A) →+ B / (B' ⊓ B)
induced by the inclusions.
Equations
- QuotientAddGroup.quotientMapAddSubgroupOfOfLe h' h = QuotientAddGroup.map (A'.addSubgroupOf A) (B'.addSubgroupOf B) (AddSubgroup.inclusion h) ⋯
Instances For
Let A', A, B', B
be subgroups of G
.
If A' = B'
and A = B
, then the quotients A / (A' ⊓ A)
and B / (B' ⊓ B)
are isomorphic.
Applying this equiv is nicer than rewriting along the equalities, since the type of
(A'.subgroupOf A : Subgroup A)
depends on A
.
Equations
Instances For
Let A', A, B', B
be subgroups of G
. If A' = B'
and A = B
, then the quotients
A / (A' ⊓ A)
and B / (B' ⊓ B)
are isomorphic. Applying this equiv is nicer than rewriting along
the equalities, since the type of (A'.addSubgroupOf A : AddSubgroup A)
depends on A
.
Equations
Instances For
The map of quotients by powers of an integer induced by a group homomorphism.
Equations
- QuotientGroup.homQuotientZPowOfHom f n = QuotientGroup.lift (zpowGroupHom n).range ((QuotientGroup.mk' (zpowGroupHom n).range).comp f) ⋯
Instances For
The map of quotients by multiples of an integer induced by an additive group homomorphism.
Equations
Instances For
The equivalence of quotients by powers of an integer induced by a group isomorphism.
Equations
- QuotientGroup.equivQuotientZPowOfEquiv e n = (QuotientGroup.homQuotientZPowOfHom (↑e) n).toMulEquiv (QuotientGroup.homQuotientZPowOfHom (↑e.symm) n) ⋯ ⋯
Instances For
The equivalence of quotients by multiples of an integer induced by an additive group isomorphism.
Equations
Instances For
Noether's second isomorphism theorem: given two subgroups H
and N
of a group G
, where
N
is normal, defines an isomorphism between H/(H ∩ N)
and (HN)/N
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The second isomorphism theorem: given two subgroups H
and N
of a group G
, where
N
is normal, defines an isomorphism between H/(H ∩ N)
and (H + N)/N
Equations
- One or more equations did not get rendered due to their size.
Instances For
The map from the third isomorphism theorem for groups: (G / N) / (M / N) → G / M
.
Equations
- QuotientGroup.quotientQuotientEquivQuotientAux N M h = QuotientGroup.lift (Subgroup.map (QuotientGroup.mk' N) M) (QuotientGroup.map N M (MonoidHom.id G) h) ⋯
Instances For
The map from the third isomorphism theorem for additive groups:
(A / N) / (M / N) → A / M
.
Equations
Instances For
Noether's third isomorphism theorem for groups: (G / N) / (M / N) ≃* G / M
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Noether's third isomorphism theorem for additive groups: (A / N) / (M / N) ≃+ A / M
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The correspondence theorem, or lattice theorem, or fourth isomorphism theorem for multiplicative groups
Equations
- One or more equations did not get rendered due to their size.
Instances For
The correspondence theorem, or lattice theorem, or fourth isomorphism theorem for additive groups
Equations
- One or more equations did not get rendered due to their size.
Instances For
If the quotient by a subgroup gives a singleton then the subgroup is the whole group.
If the quotient by an additive subgroup gives a singleton then the additive subgroup is the whole additive group.