Documentation

Mathlib.GroupTheory.SpecificGroups.Alternating.MaximalSubgroups

Maximal subgroups of the alternating group #

This is the “intransitive case” of the O'Nan-Scott classification of maximal subgroups of the alternating groups.

Compare with Equiv.Perm.isCoatom_stabilizer for the case of the permutation group.

TODO #

Reference #

The argument is taken from M. Liebeck, C. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, 1987.

theorem Equiv.Perm.exists_mem_stabilizer_isThreeCycle {α : Type u_1} [Fintype α] [DecidableEq α] (s : Set α) ( : 4 < Nat.card α) :

In the alternating group, the stabilizer of a set acts primitively on that set if the complement is nontrivial.

A subgroup of the alternating group that contains the stabilizer of a set acts primitively on that set if the complement is nontrivial.

If s : Set α is nonempty and its complement has at least two elements, then stabilizer (alternatingGroup α) s ≠ ⊤.

theorem alternatingGroup.exists_mem_stabilizer_smul_eq {α : Type u_1} [Fintype α] [DecidableEq α] ( : 4 Nat.card α) {t : Set α} (a : α) :
a tbt, gMulAction.stabilizer (↥(alternatingGroup α)) t, g a = b
theorem alternatingGroup.isCoatom_stabilizer {α : Type u_1} [Fintype α] [DecidableEq α] {s : Set α} (h0 : s.Nonempty) (h1 : s.Nonempty) (hs : Nat.card α 2 * s.ncard) :

MulAction.stabilizer (alternatingGroup α) s is a maximal subgroup of alternatingGroup α, provided s ≠ ∅, sᶜ ≠ ∅ and Nat.card α ≠ 2 * s.ncard.

This is the intransitive case of the O'Nan–Scott classification.