Documentation

Mathlib.GroupTheory.Perm.MaximalSubgroups

Maximal subgroups of the symmetric groups #

TODO #

Reference #

The argument is taken from M. Liebeck, C. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, 1987.

theorem Equiv.Perm.IsPretransitive.of_partition (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] {s : Set α} (hs : as, bs, ∃ (g : G), g a = b) (hs' : as, bs, ∃ (g : G), g a = b) (hG : MulAction.stabilizer G s ) :
theorem Equiv.Perm.swap_mem_stabilizer {α : Type u_2} [DecidableEq α] {a b : α} {s : Set α} (ha : a s) (hb : b s) :
theorem Equiv.Perm.moves_in {α : Type u_2} (G : Subgroup (Perm α)) (t : Set α) (hGt : MulAction.stabilizer (Perm α) t G) (a : α) :
a tbt, ∃ (g : G), g a = b
theorem Equiv.Perm.has_swap_mem_of_lt_stabilizer {α : Type u_2} [DecidableEq α] (s : Set α) (G : Subgroup (Perm α)) (hG : MulAction.stabilizer (Perm α) s < G) :
∃ (g : Perm α), g.IsSwap g G
theorem Equiv.Perm.ofSubtype_mem_stabilizer {α : Type u_2} {s : Set α} [DecidablePred fun (x : α) => x s] (g : Perm s) :
theorem IsBlock.subsingleton_of_ssubset_compl_of_stabilizer_le {α : Type u_2} {s B : Set α} {G : Subgroup (Equiv.Perm α)} (hB_ss_sc : B s) (hG : MulAction.stabilizer (Equiv.Perm α) s G) (hB : MulAction.IsBlock (↥G) B) :
theorem IsBlock.subsingleton_of_stabilizer_lt_of_subset {α : Type u_2} {s B : Set α} {G : Subgroup (Equiv.Perm α)} (hB_not_le_sc : ∀ (B : Set α), MulAction.IsBlock (↥G) BB sB.Subsingleton) (hG : MulAction.stabilizer (Equiv.Perm α) s < G) (hBs : B s) (hB : MulAction.IsBlock (↥G) B) :
theorem IsBlock.compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl {α : Type u_2} [Finite α] {s B : Set α} {G : Subgroup (Equiv.Perm α)} (hG : MulAction.stabilizer (Equiv.Perm α) s G) (hBs : ¬B s) (hBsc : ¬B s) (hB : MulAction.IsBlock (↥G) B) :
s B
theorem Equiv.Perm.isCoatom_stabilizer {α : Type u_2} [Finite α] {s : Set α} (hs_nonempty : s.Nonempty) (hsc_nonempty : s.Nonempty) ( : Nat.card α 2 * s.ncard) :

MulAction.stabilizer (Perm α) s is a maximal subgroup of Perm α, provided s and sᶜ are nonempty, and Nat.card α ≠ 2 * Nat.card s.