Documentation

Mathlib.GroupTheory.GroupAction.Jordan

Theorems of Jordan #

A proof of theorems of Jordan regarding primitive permutation groups.

This mostly follows the book Wielandt, Finite permutation groups.

TODO #

theorem normalClosure_of_stabilizer_eq_top {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (hsn' : 2 < ENat.card α) (hG' : MulAction.IsMultiplyPretransitive G α 2) {a : α} :

In a 2-transitive action, the normal closure of stabilizers is the full group.

theorem MulAction.IsPreprimitive.is_two_pretransitive {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (hG : IsPreprimitive G α) {s : Set α} {n : } (hsn : s.ncard = n + 1) (hsn' : n + 2 < Nat.card α) (hs_trans : IsPretransitive (fixingSubgroup G s) (SubMulAction.ofFixingSubgroup G s)) :

A criterion due to Jordan for being 2-pretransitive (Wielandt, 13.1)

theorem MulAction.IsPreprimitive.is_two_preprimitive {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (hG : IsPreprimitive G α) {s : Set α} {n : } (hsn : s.ncard = n + 1) (hsn' : n + 2 < Nat.card α) (hs_prim : IsPreprimitive (fixingSubgroup G s) (SubMulAction.ofFixingSubgroup G s)) :

A criterion due to Jordan for being 2-preprimitive (Wielandt, 13.1)

theorem MulAction.IsPreprimitive.isMultiplyPreprimitive {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (hG : IsPreprimitive G α) {s : Set α} {n : } (hsn : s.ncard = n + 1) (hsn' : n + 2 < Nat.card α) (hprim : IsPreprimitive (fixingSubgroup G s) (SubMulAction.ofFixingSubgroup G s)) :

Jordan's multiple primitivity criterion (Wielandt, 13.3)

theorem Equiv.Perm.subgroup_eq_top_of_nontrivial {α : Type u_1} {G : Subgroup (Perm α)} [Finite α] ( : Nat.card α 2) (hG : Nontrivial G) :
G =
theorem Equiv.Perm.isPretransitive_of_isCycle_mem {α : Type u_1} {G : Subgroup (Perm α)} [Fintype α] [DecidableEq α] {g : Perm α} (hgc : g.IsCycle) (hg : g G) :
theorem Equiv.Perm.eq_top_of_isPreprimitive_of_isSwap_mem {α : Type u_1} {G : Subgroup (Perm α)} [Fintype α] [DecidableEq α] (hG : MulAction.IsPreprimitive (↥G) α) (g : Perm α) (h2g : g.IsSwap) (hg : g G) :
G =

A primitive subgroup of Equiv.Perm α that contains a swap is the full permutation group (Jordan).

A primitive subgroup of Equiv.Perm α that contains a 3-cycle contains the alternating group (Jordan).