Documentation

Mathlib.GroupTheory.GroupAction.MultiplePrimitivity

Multiply preprimitive actions #

Let G be a group acting on a type α.

class AddAction.IsMultiplyPreprimitive (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] (n : ) :

An additive action is n-multiply preprimitive if is is n-multiply transitive and if, when n ≥ 1, for every set s of cardinality n - 1, the action of fixingAddSubgroup M s on the complement of s is preprimitive.

Instances
    class MulAction.IsMultiplyPreprimitive (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] (n : ) :

    A group action is n-multiply preprimitive if is is n-multiply transitive and if, when n ≥ 1, for every set s of cardinality n - 1, the action of fixingSubgroup M s on the complement of s is preprimitive.

    Instances
      theorem MulAction.is_zero_preprimitive (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] :

      Any action is 0-preprimitive

      An action is preprimitive iff it is 1-preprimitive

      The action of stabilizer M a is one-less preprimitive

      A pretransitive action is n.succ-preprimitive iff the action of stabilizers is n-preprimitive.

      theorem MulAction.ofFixingSubgroup.isMultiplyPreprimitive (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {m n : } [IsMultiplyPreprimitive M α n] {s : Set α} [Finite s] (hs : s.ncard + m = n) :

      The fixator of a subset of cardinal d in an n-primitive action acts n-d-primitively on the remaining (d ≤ n)

      n.succ-pretransitivity implies n-preprimitivity.

      n.succ-pretransitivity implies n-preprimitivity.

      theorem MulAction.isMultiplyPreprimitive_of_le (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {n : } (hn : IsMultiplyPreprimitive M α n) {m : } (hmn : m n) ( : n ENat.card α) :

      An n-preprimitive action is m-preprimitive for m ≤ n.

      theorem AddAction.isMultiplyPreprimitive_of_le (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {n : } (hn : IsMultiplyPreprimitive M α n) {m : } (hmn : m n) ( : n ENat.card α) :

      An n-preprimitive action is m-preprimitive for m ≤ n.

      theorem MulAction.IsMultiplyPreprimitive.of_bijective_map {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {N : Type u_3} {β : Type u_4} [Group N] [MulAction N β] {φ : MN} {f : α →ₑ[φ] β} (hf : Function.Bijective f) {n : } (h : IsMultiplyPreprimitive M α n) :
      theorem AddAction.IsMultiplyPreprimitive.of_bijective_map {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {N : Type u_3} {β : Type u_4} [AddGroup N] [AddAction N β] {φ : MN} {f : α →ₑ[φ] β} (hf : Function.Bijective f) {n : } (h : IsMultiplyPreprimitive M α n) :
      theorem MulAction.isMultiplyPreprimitive_congr {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {N : Type u_3} {β : Type u_4} [Group N] [MulAction N β] {φ : MN} ( : Function.Surjective φ) {f : α →ₑ[φ] β} (hf : Function.Bijective f) {n : } :
      theorem AddAction.isMultiplyPreprimitive_congr {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {N : Type u_3} {β : Type u_4} [AddGroup N] [AddAction N β] {φ : MN} ( : Function.Surjective φ) {f : α →ₑ[φ] β} (hf : Function.Bijective f) {n : } :