Z-Groups #
A Z-group is a group whose Sylow subgroups are all cyclic.
Main definitions #
IsZGroup G
: a predicate stating that all Sylow subgroups ofG
are cyclic.
Main results #
IsZGroup.isCyclic_abelianization
: a finite Z-group has cyclic abelianization.IsZGroup.isCyclic_commutator
: a finite Z-group has cyclic commutator subgroup.IsZGroup.coprime_commutator_index
: the commutator subgroup of a finite Z-group is a Hall-subgroup (the commutator subgroup has cardinality coprime to its index).isZGroup_iff_exists_mulEquiv
: a finite groupG
is a Z-group if and only ifG
is isomorphic to a semidirect product of two cyclic subgroups of coprime order.
theorem
IsZGroup.of_injective
{G : Type u_1}
{G' : Type u_2}
[Group G]
[Group G']
{f : G →* G'}
[hG' : IsZGroup G']
(hf : Function.Injective ⇑f)
:
IsZGroup G
instance
IsZGroup.instIsCyclicOfFiniteOfIsNilpotent
{G : Type u_1}
[Group G]
[Finite G]
[IsZGroup G]
[hG : Group.IsNilpotent G]
:
IsCyclic G
A finite Z-group has cyclic abelianization.
theorem
IsZGroup.isCyclic_commutator
(G : Type u_1)
[Group G]
[Finite G]
[IsZGroup G]
:
IsCyclic ↥(commutator G)
A finite Z-group has cyclic commutator subgroup.
theorem
IsPGroup.smul_mul_inv_trivial_or_surjective
{G : Type u_1}
[Group G]
{p : ℕ}
[Fact (Nat.Prime p)]
[IsCyclic G]
(hG : IsPGroup p G)
{K : Type u_4}
[Group K]
[MulDistribMulAction K G]
(hGK : (Nat.card G).Coprime (Nat.card K))
:
If a cyclic p
-group G
acts on a group K
of coprime order, then the map K × G → G
defined by (k, g) ↦ k • g * g⁻¹
is either trivial or surjective.
theorem
IsPGroup.commutator_eq_bot_or_commutator_eq_self
{G : Type u_1}
[Group G]
{p : ℕ}
[Fact (Nat.Prime p)]
{P K : Subgroup G}
[IsCyclic ↥P]
(hP : IsPGroup p ↥P)
(hKP : K ≤ P.normalizer)
(hPK : (Nat.card ↥P).Coprime (Nat.card ↥K))
:
If a cyclic p
-subgroup P
acts by conjugation on a subgroup K
of coprime order, then
either ⁅K, P⁆ = ⊥
or ⁅K, P⁆ = P
.
theorem
Sylow.commutator_eq_bot_or_commutator_eq_self
{G : Type u_1}
[Group G]
{p : ℕ}
[Fact (Nat.Prime p)]
[Finite G]
(P : Sylow p G)
[IsCyclic ↥↑P]
[(↑P).Normal]
{K : Subgroup G}
(h : K.IsComplement' ↑P)
:
If a normal cyclic Sylow p
-subgroup P
has a complement K
, then either ⁅K, P⁆ = ⊥
or
⁅K, P⁆ = P
.
theorem
IsZGroup.coprime_commutator_index
(G : Type u_1)
[Group G]
[Finite G]
[IsZGroup G]
:
(Nat.card ↥(commutator G)).Coprime (commutator G).index
If G
is a finite Z-group, then commutator G
is a Hall subgroup of G
.
theorem
isZGroup_of_coprime
{G : Type u_1}
{G' : Type u_2}
{G'' : Type u_3}
[Group G]
[Group G']
[Group G'']
{f : G →* G'}
{f' : G' →* G''}
[Finite G]
[IsZGroup G]
[IsZGroup G'']
(h_le : f'.ker ≤ f.range)
(h_cop : (Nat.card G).Coprime (Nat.card G''))
:
IsZGroup G'
An extension of coprime Z-groups is a Z-group.
A finite group G
is a Z-group if and only if G
is isomorphic to a semidirect product of two
cyclic subgroups of coprime order.