Documentation

Mathlib.GroupTheory.SpecificGroups.ZGroup

Z-Groups #

A Z-group is a group whose Sylow subgroups are all cyclic.

Main definitions #

Main results #

TODO: Show that if G is a Z-group with commutator subgroup G', then G = G' ⋊ G/G' where G' and G/G' are cyclic of coprime orders.

class IsZGroup (G : Type u_1) [Group G] :

A Z-group is a group whose Sylow subgroups are all cyclic.

Instances
    theorem isZGroup_iff (G : Type u_1) [Group G] :
    IsZGroup G ∀ (p : ), Nat.Prime p∀ (P : Sylow p G), IsCyclic P
    theorem IsZGroup.of_injective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [hG' : IsZGroup G'] (hf : Function.Injective f) :
    theorem IsZGroup.of_surjective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [Finite G] [hG : IsZGroup G] (hf : Function.Surjective f) :
    instance IsZGroup.instQuotientSubgroupOfFinite {G : Type u_1} [Group G] [Finite G] [IsZGroup G] (H : Subgroup G) [H.Normal] :

    A finite Z-group has cyclic abelianization.