Documentation

Mathlib.GroupTheory.Transfer

The Transfer Homomorphism #

In this file we construct the transfer homomorphism.

Main definitions #

Main results #

noncomputable def Subgroup.leftTransversals.diff {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : (Subgroup.leftTransversals H)) [H.FiniteIndex] :
A

The difference of two left transversals

Equations
Instances For
    noncomputable def AddSubgroup.leftTransversals.diff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S T : (AddSubgroup.leftTransversals H)) [H.FiniteIndex] :
    A

    The difference of two left transversals

    Equations
    Instances For
      theorem Subgroup.leftTransversals.diff_self {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (T : (Subgroup.leftTransversals H)) [H.FiniteIndex] :
      theorem AddSubgroup.leftTransversals.diff_self {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (T : (AddSubgroup.leftTransversals H)) [H.FiniteIndex] :
      theorem Subgroup.leftTransversals.diff_inv {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : (Subgroup.leftTransversals H)) [H.FiniteIndex] :
      theorem Subgroup.leftTransversals.smul_diff_smul {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : (Subgroup.leftTransversals H)) [H.FiniteIndex] (g : G) :
      theorem AddSubgroup.leftTransversals.vadd_diff_vadd {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S T : (AddSubgroup.leftTransversals H)) [H.FiniteIndex] (g : G) :
      noncomputable def Subgroup.transferFunction {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
      G HG

      The transfer transversal as a function. Given a ⟨g⟩-orbit q₀, g • q₀, ..., g ^ (m - 1) • q₀ in G ⧸ H, an element g ^ k • q₀ is mapped to g ^ k • g₀ for a fixed choice of representative g₀ of q₀.

      Equations
      • H.transferFunction g q = g ^ ((H.quotientEquivSigmaZMod g) q).snd.cast * Quotient.out (Quotient.out ((H.quotientEquivSigmaZMod g) q).fst)
      Instances For
        theorem Subgroup.transferFunction_apply {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
        H.transferFunction g q = g ^ ((H.quotientEquivSigmaZMod g) q).snd.cast * Quotient.out (Quotient.out ((H.quotientEquivSigmaZMod g) q).fst)
        theorem Subgroup.coe_transferFunction {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
        (H.transferFunction g q) = q
        def Subgroup.transferSet {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
        Set G

        The transfer transversal as a set. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

        Equations
        • H.transferSet g = Set.range (H.transferFunction g)
        Instances For
          theorem Subgroup.mem_transferSet {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
          H.transferFunction g q H.transferSet g
          def Subgroup.transferTransversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :

          The transfer transversal. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

          Equations
          • H.transferTransversal g = H.transferSet g,
          Instances For
            theorem Subgroup.transferTransversal_apply {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
            ((Subgroup.MemLeftTransversals.toEquiv ) q) = H.transferFunction g q
            theorem Subgroup.transferTransversal_apply' {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : MulAction.orbitRel.Quotient (↥(Subgroup.zpowers g)) (G H)) (k : ZMod (Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out q))) :
            theorem Subgroup.transferTransversal_apply'' {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : MulAction.orbitRel.Quotient (↥(Subgroup.zpowers g)) (G H)) (k : ZMod (Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out q))) :
            ((Subgroup.MemLeftTransversals.toEquiv ) (g ^ k.cast Quotient.out q)) = if k = 0 then g ^ Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out q) * Quotient.out (Quotient.out q) else g ^ k.cast * Quotient.out (Quotient.out q)
            noncomputable def MonoidHom.transfer {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [H.FiniteIndex] :
            G →* A

            Given ϕ : H →* A from H : Subgroup G to a commutative group A, the transfer homomorphism is transfer ϕ : G →* A.

            Equations
            Instances For
              noncomputable def AddMonoidHom.transfer {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) [H.FiniteIndex] :
              G →+ A

              Given ϕ : H →+ A from H : AddSubgroup G to an additive commutative group A, the transfer homomorphism is transfer ϕ : G →+ A.

              Equations
              Instances For
                theorem MonoidHom.transfer_def {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (T : (Subgroup.leftTransversals H)) [H.FiniteIndex] (g : G) :
                ϕ.transfer g = Subgroup.leftTransversals.diff ϕ T (g T)
                theorem AddMonoidHom.transfer_def {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (T : (AddSubgroup.leftTransversals H)) [H.FiniteIndex] (g : G) :
                ϕ.transfer g = AddSubgroup.leftTransversals.diff ϕ T (g +ᵥ T)
                theorem MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [H.FiniteIndex] (g : G) [Fintype (Quotient (MulAction.orbitRel (↥(Subgroup.zpowers g)) (G H)))] :
                ϕ.transfer g = q : Quotient (MulAction.orbitRel (↥(Subgroup.zpowers g)) (G H)), ϕ (Quotient.out q.out)⁻¹ * g ^ Function.minimalPeriod (fun (x : G H) => g x) q.out * Quotient.out q.out,

                Explicit computation of the transfer homomorphism.

                theorem MonoidHom.transfer_eq_pow_aux {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :
                g ^ H.index H

                Auxiliary lemma in order to state transfer_eq_pow.

                theorem MonoidHom.transfer_eq_pow {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [H.FiniteIndex] (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :
                ϕ.transfer g = ϕ g ^ H.index,
                theorem MonoidHom.transfer_center_eq_pow {G : Type u_1} [Group G] [(Subgroup.center G).FiniteIndex] (g : G) :
                (MonoidHom.id (Subgroup.center G)).transfer g = g ^ (Subgroup.center G).index,
                noncomputable def MonoidHom.transferCenterPow (G : Type u_1) [Group G] [(Subgroup.center G).FiniteIndex] :

                The transfer homomorphism G →* center G.

                Equations
                Instances For
                  @[simp]
                  theorem MonoidHom.transferCenterPow_apply {G : Type u_1} [Group G] [(Subgroup.center G).FiniteIndex] (g : G) :
                  noncomputable def MonoidHom.transferSylow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [(↑P).FiniteIndex] :
                  G →* P

                  The homomorphism G →* P in Burnside's transfer theorem.

                  Equations
                  Instances For
                    theorem MonoidHom.transferSylow_eq_pow_aux {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] (g : G) (hg : g P) (k : ) (g₀ : G) (h : g₀⁻¹ * g ^ k * g₀ P) :
                    g₀⁻¹ * g ^ k * g₀ = g ^ k

                    Auxiliary lemma in order to state transferSylow_eq_pow.

                    theorem MonoidHom.transferSylow_eq_pow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] (g : G) (hg : g P) :
                    (MonoidHom.transferSylow P hP) g = g ^ (↑P).index,
                    theorem MonoidHom.transferSylow_restrict_eq_pow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] :
                    ((MonoidHom.transferSylow P hP).restrict P) = fun (x : P) => x ^ (↑P).index
                    theorem MonoidHom.ker_transferSylow_isComplement' {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] :
                    (MonoidHom.transferSylow P hP).ker.IsComplement' P

                    Burnside's normal p-complement theorem: If N(P) ≤ C(P), then P has a normal complement.

                    theorem MonoidHom.not_dvd_card_ker_transferSylow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] :
                    theorem MonoidHom.ker_transferSylow_disjoint {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] (Q : Subgroup G) (hQ : IsPGroup p Q) :
                    theorem IsCyclic.normalizer_le_centralizer {G : Type u_3} [Group G] [Finite G] {p : } (hp : (Nat.card G).minFac = p) {P : Sylow p G} (hP : IsCyclic P) :
                    (↑P).normalizer Subgroup.centralizer P
                    theorem IsCyclic.isComplement' {G : Type u_3} [Group G] [Finite G] {p : } (hp : (Nat.card G).minFac = p) {P : Sylow p G} (hP : IsCyclic P) :
                    (MonoidHom.transferSylow P ).ker.IsComplement' P

                    A cyclic Sylow subgroup for the smallest prime has a normal complement.