Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation

Conjugations #

This file defines the grade reversal and grade involution functions on multivectors, reverse and involute. Together, these operations compose to form the "Clifford conjugate", hence the name of this file.

https://en.wikipedia.org/wiki/Clifford_algebra#Antiautomorphisms

Main definitions #

Main statements #

Grade involution, inverting the sign of each basis vector.

Equations
Instances For
    @[simp]
    theorem CliffordAlgebra.involute_ι {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (m : M) :
    involute ((ι Q) m) = -(ι Q) m
    @[simp]
    theorem CliffordAlgebra.involute_involute {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
    involute (involute a) = a
    @[simp]
    theorem CliffordAlgebra.involuteEquiv_symm_apply {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
    involuteEquiv.symm a = involute a
    @[simp]
    theorem CliffordAlgebra.involuteEquiv_apply {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
    involuteEquiv a = involute a
    @[simp]
    theorem CliffordAlgebra.reverseOp_ι {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (m : M) :
    reverseOp ((ι Q) m) = MulOpposite.op ((ι Q) m)
    @[simp]
    theorem CliffordAlgebra.reverseOpEquiv_apply {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
    reverseOpEquiv a = reverseOp a
    @[simp]
    theorem CliffordAlgebra.reverseOpEquiv_opComm {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} :
    AlgEquiv.opComm reverseOpEquiv = reverseOpEquiv.symm

    Grade reversion, inverting the multiplication order of basis vectors. Also called transpose in some literature.

    Equations
    Instances For
      @[simp]
      theorem CliffordAlgebra.unop_reverseOp {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (x : CliffordAlgebra Q) :
      MulOpposite.unop (reverseOp x) = reverse x
      @[simp]
      theorem CliffordAlgebra.op_reverse {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (x : CliffordAlgebra Q) :
      MulOpposite.op (reverse x) = reverseOp x
      @[simp]
      theorem CliffordAlgebra.reverse_ι {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (m : M) :
      reverse ((ι Q) m) = (ι Q) m
      @[simp]
      theorem CliffordAlgebra.reverse.commutes {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (r : R) :
      reverse ((algebraMap R (CliffordAlgebra Q)) r) = (algebraMap R (CliffordAlgebra Q)) r
      @[simp]
      theorem CliffordAlgebra.reverse.map_one {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} :
      reverse 1 = 1
      @[simp]
      theorem CliffordAlgebra.reverse.map_mul {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a b : CliffordAlgebra Q) :
      reverse (a * b) = reverse b * reverse a
      @[simp]
      theorem CliffordAlgebra.reverse_reverse {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
      reverse (reverse a) = a
      @[simp]
      theorem CliffordAlgebra.reverseEquiv_apply {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a✝ : CliffordAlgebra Q) :
      reverseEquiv a✝ = reverse a✝
      @[simp]
      theorem CliffordAlgebra.reverseEquiv_symm_apply {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a✝ : CliffordAlgebra Q) :
      reverseEquiv.symm a✝ = reverse a✝
      theorem CliffordAlgebra.reverse_comp_involute {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} :
      reverse ∘ₗ involute.toLinearMap = involute.toLinearMap ∘ₗ reverse

      CliffordAlgebra.reverse and CliffordAlgebra.involute commute. Note that the composition is sometimes referred to as the "clifford conjugate".

      theorem CliffordAlgebra.reverse_involute {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (a : CliffordAlgebra Q) :
      reverse (involute a) = involute (reverse a)

      Statements about conjugations of products of lists #

      theorem CliffordAlgebra.reverse_prod_map_ι {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (l : List M) :
      reverse (List.map (⇑(ι Q)) l).prod = (List.map (⇑(ι Q)) l).reverse.prod

      Taking the reverse of the product a list of $n$ vectors lifted via ι is equivalent to taking the product of the reverse of that list.

      theorem CliffordAlgebra.involute_prod_map_ι {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} (l : List M) :
      involute (List.map (⇑(ι Q)) l).prod = (-1) ^ l.length (List.map (⇑(ι Q)) l).prod

      Taking the involute of the product a list of $n$ vectors lifted via ι is equivalent to premultiplying by ${-1}^n$.

      Statements about Submodule.map and Submodule.comap #

      @[simp]
      theorem CliffordAlgebra.evenOdd_map_involute {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (n : ZMod 2) :
      Submodule.map involute.toLinearMap (evenOdd Q n) = evenOdd Q n
      @[simp]
      theorem CliffordAlgebra.evenOdd_comap_involute {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (n : ZMod 2) :
      Submodule.comap involute.toLinearMap (evenOdd Q n) = evenOdd Q n

      Like Submodule.map_mul, but with the multiplication reversed.

      @[simp]
      theorem CliffordAlgebra.evenOdd_map_reverse {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (n : ZMod 2) :
      @[simp]
      @[simp]
      theorem CliffordAlgebra.involute_mem_evenOdd_iff {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {x : CliffordAlgebra Q} {n : ZMod 2} :
      involute x evenOdd Q n x evenOdd Q n
      @[simp]
      theorem CliffordAlgebra.reverse_mem_evenOdd_iff {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {x : CliffordAlgebra Q} {n : ZMod 2} :
      reverse x evenOdd Q n x evenOdd Q n

      TODO: show that these are iffs when Invertible (2 : R).

      theorem CliffordAlgebra.involute_eq_of_mem_even {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} (h : x evenOdd Q 0) :
      involute x = x
      theorem CliffordAlgebra.involute_eq_of_mem_odd {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} (h : x evenOdd Q 1) :
      involute x = -x