Documentation

Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic

Conditional expectation #

We build the conditional expectation of an integrable function f with value in a Banach space with respect to a measure μ (defined on a measurable space structure m₀) and a measurable space structure m with hm : m ≤ m₀ (a sub-sigma-algebra). This is an m-strongly measurable function μ[f|hm] which is integrable and verifies ∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ for all m-measurable sets s. It is unique as an element of .

The construction is done in four steps:

The first step is done in MeasureTheory.Function.ConditionalExpectation.CondexpL2, the two next steps in MeasureTheory.Function.ConditionalExpectation.CondexpL1 and the final step is performed in this file.

Main results #

The conditional expectation and its properties

While condExp is function-valued, we also define condExpL1 with value in L1 and a continuous linear map condExpL1CLM from L1 to L1. condExp should be used in most cases.

Uniqueness of the conditional expectation

Notations #

For a measure μ defined on a measurable space structure m₀, another measurable space structure m with hm : m ≤ m₀ (a sub-σ-algebra) and a function f, we define the notation

TODO #

See https://leanprover.zulipchat.com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Conditional.20expectation.20of.20product for how to prove that we can pull m-measurable continuous linear maps out of the m-conditional expectation. This would generalise MeasureTheory.condExp_mul_of_stronglyMeasurable_left.

Tags #

conditional expectation, conditional expected value

theorem MeasureTheory.condExp_def {α : Type u_5} {E : Type u_6} (m : MeasurableSpace α) {m₀ : MeasurableSpace α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (μ : Measure α) (f : αE) :
condExp m μ f = if hm : m m₀ then if h : SigmaFinite (μ.trim hm) Integrable f μ then if StronglyMeasurable f then f else let_fun this := ; AEStronglyMeasurable.mk (condExpL1 hm μ f) else 0 else 0
@[irreducible]
noncomputable def MeasureTheory.condExp {α : Type u_5} {E : Type u_6} (m : MeasurableSpace α) {m₀ : MeasurableSpace α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (μ : Measure α) (f : αE) :
αE

Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true:

  • m is not a sub-σ-algebra of m₀,
  • μ is not σ-finite with respect to m,
  • f is not integrable.
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[deprecated MeasureTheory.condExp (since := "2025-01-21")]
    def MeasureTheory.condexp {α : Type u_5} {E : Type u_6} (m : MeasurableSpace α) {m₀ : MeasurableSpace α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (μ : Measure α) (f : αE) :
    αE

    Alias of MeasureTheory.condExp.


    Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true:

    • m is not a sub-σ-algebra of m₀,
    • μ is not σ-finite with respect to m,
    • f is not integrable.
    Equations
    Instances For

      Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true:

      • m is not a sub-σ-algebra of m₀,
      • μ is not σ-finite with respect to m,
      • f is not integrable.
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasureTheory.condExp_of_not_le {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm_not : ¬m m₀) :
        condExp m μ f = 0
        @[deprecated MeasureTheory.condExp_of_not_le (since := "2025-01-21")]
        theorem MeasureTheory.condexp_of_not_le {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm_not : ¬m m₀) :
        condExp m μ f = 0

        Alias of MeasureTheory.condExp_of_not_le.

        theorem MeasureTheory.condExp_of_not_sigmaFinite {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) (hμm_not : ¬SigmaFinite (μ.trim hm)) :
        condExp m μ f = 0
        @[deprecated MeasureTheory.condExp_of_not_sigmaFinite (since := "2025-01-21")]
        theorem MeasureTheory.condexp_of_not_sigmaFinite {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) (hμm_not : ¬SigmaFinite (μ.trim hm)) :
        condExp m μ f = 0

        Alias of MeasureTheory.condExp_of_not_sigmaFinite.

        theorem MeasureTheory.condExp_of_sigmaFinite {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :
        @[deprecated MeasureTheory.condExp_of_sigmaFinite (since := "2025-01-21")]
        theorem MeasureTheory.condexp_of_sigmaFinite {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :

        Alias of MeasureTheory.condExp_of_sigmaFinite.

        theorem MeasureTheory.condExp_of_stronglyMeasurable {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αE} (hf : StronglyMeasurable f) (hfi : Integrable f μ) :
        condExp m μ f = f
        @[deprecated MeasureTheory.condExp_of_stronglyMeasurable (since := "2025-01-21")]
        theorem MeasureTheory.condexp_of_stronglyMeasurable {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αE} (hf : StronglyMeasurable f) (hfi : Integrable f μ) :
        condExp m μ f = f

        Alias of MeasureTheory.condExp_of_stronglyMeasurable.

        @[simp]
        theorem MeasureTheory.condExp_const {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) (c : E) [IsFiniteMeasure μ] :
        (condExp m μ fun (x : α) => c) = fun (x : α) => c
        @[deprecated MeasureTheory.condExp_const (since := "2025-01-21")]
        theorem MeasureTheory.condexp_const {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) (c : E) [IsFiniteMeasure μ] :
        (condExp m μ fun (x : α) => c) = fun (x : α) => c

        Alias of MeasureTheory.condExp_const.

        theorem MeasureTheory.condExp_ae_eq_condExpL1 {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] (f : αE) :
        condExp m μ f =ᶠ[ae μ] (condExpL1 hm μ f)
        @[deprecated MeasureTheory.condExp_ae_eq_condExpL1 (since := "2025-01-21")]
        theorem MeasureTheory.condexp_ae_eq_condexpL1 {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] (f : αE) :
        condExp m μ f =ᶠ[ae μ] (condExpL1 hm μ f)

        Alias of MeasureTheory.condExp_ae_eq_condExpL1.

        theorem MeasureTheory.condExp_ae_eq_condExpL1CLM {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) :
        condExp m μ f =ᶠ[ae μ] ((condExpL1CLM E hm μ) (Integrable.toL1 f hf))
        @[deprecated MeasureTheory.condExp_ae_eq_condExpL1CLM (since := "2025-01-21")]
        theorem MeasureTheory.condexp_ae_eq_condexpL1CLM {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) :
        condExp m μ f =ᶠ[ae μ] ((condExpL1CLM E hm μ) (Integrable.toL1 f hf))

        Alias of MeasureTheory.condExp_ae_eq_condExpL1CLM.

        theorem MeasureTheory.condExp_of_not_integrable {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : ¬Integrable f μ) :
        condExp m μ f = 0
        @[deprecated MeasureTheory.condExp_of_not_integrable (since := "2025-01-21")]
        theorem MeasureTheory.condexp_undef {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : ¬Integrable f μ) :
        condExp m μ f = 0

        Alias of MeasureTheory.condExp_of_not_integrable.

        @[deprecated MeasureTheory.condExp_of_not_integrable (since := "2025-01-21")]
        theorem MeasureTheory.condExp_undef {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : ¬Integrable f μ) :
        condExp m μ f = 0

        Alias of MeasureTheory.condExp_of_not_integrable.

        @[simp]
        theorem MeasureTheory.condExp_zero {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
        condExp m μ 0 = 0
        @[deprecated MeasureTheory.condExp_zero (since := "2025-01-21")]
        theorem MeasureTheory.condexp_zero {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
        condExp m μ 0 = 0

        Alias of MeasureTheory.condExp_zero.

        theorem MeasureTheory.stronglyMeasurable_condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
        @[deprecated MeasureTheory.stronglyMeasurable_condExp (since := "2025-01-21")]
        theorem MeasureTheory.stronglyMeasurable_condexp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :

        Alias of MeasureTheory.stronglyMeasurable_condExp.

        theorem MeasureTheory.condExp_congr_ae {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (h : f =ᶠ[ae μ] g) :
        condExp m μ f =ᶠ[ae μ] condExp m μ g
        @[deprecated MeasureTheory.condExp_congr_ae (since := "2025-01-21")]
        theorem MeasureTheory.condexp_congr_ae {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (h : f =ᶠ[ae μ] g) :
        condExp m μ f =ᶠ[ae μ] condExp m μ g

        Alias of MeasureTheory.condExp_congr_ae.

        theorem MeasureTheory.condExp_of_aestronglyMeasurable' {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αE} (hf : AEStronglyMeasurable f μ) (hfi : Integrable f μ) :
        condExp m μ f =ᶠ[ae μ] f
        @[deprecated MeasureTheory.condExp_of_aestronglyMeasurable' (since := "2025-01-21")]
        theorem MeasureTheory.condexp_of_aestronglyMeasurable' {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αE} (hf : AEStronglyMeasurable f μ) (hfi : Integrable f μ) :
        condExp m μ f =ᶠ[ae μ] f

        Alias of MeasureTheory.condExp_of_aestronglyMeasurable'.

        theorem MeasureTheory.integrable_condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
        Integrable (condExp m μ f) μ
        @[deprecated MeasureTheory.integrable_condExp (since := "2025-01-21")]
        theorem MeasureTheory.integrable_condexp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
        Integrable (condExp m μ f) μ

        Alias of MeasureTheory.integrable_condExp.

        theorem MeasureTheory.setIntegral_condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} {s : Set α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet s) :
        (x : α) in s, condExp m μ f x μ = (x : α) in s, f x μ

        The integral of the conditional expectation μ[f|hm] over an m-measurable set is equal to the integral of f on that set.

        @[deprecated MeasureTheory.setIntegral_condExp (since := "2025-01-21")]
        theorem MeasureTheory.setIntegral_condexp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} {s : Set α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet s) :
        (x : α) in s, condExp m μ f x μ = (x : α) in s, f x μ

        Alias of MeasureTheory.setIntegral_condExp.


        The integral of the conditional expectation μ[f|hm] over an m-measurable set is equal to the integral of f on that set.

        theorem MeasureTheory.integral_condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :
        (x : α), condExp m μ f x μ = (x : α), f x μ
        @[deprecated MeasureTheory.integral_condExp (since := "2025-01-21")]
        theorem MeasureTheory.integral_condexp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :
        (x : α), condExp m μ f x μ = (x : α), f x μ

        Alias of MeasureTheory.integral_condExp.

        theorem MeasureTheory.integral_condExp_indicator {α : Type u_1} {β : Type u_2} {m₀ : MeasurableSpace α} {μ : Measure α} [mβ : MeasurableSpace β] {Y : αβ} (hY : Measurable Y) [SigmaFinite (μ.trim )] {A : Set α} (hA : MeasurableSet A) :
        (x : α), condExp (MeasurableSpace.comap Y ) μ (A.indicator fun (x : α) => 1) x μ = (μ A).toReal

        Law of total probability using condExp as conditional probability.

        @[deprecated MeasureTheory.integral_condExp_indicator (since := "2025-01-21")]
        theorem MeasureTheory.integral_condexp_indicator {α : Type u_1} {β : Type u_2} {m₀ : MeasurableSpace α} {μ : Measure α} [mβ : MeasurableSpace β] {Y : αβ} (hY : Measurable Y) [SigmaFinite (μ.trim )] {A : Set α} (hA : MeasurableSet A) :
        (x : α), condExp (MeasurableSpace.comap Y ) μ (A.indicator fun (x : α) => 1) x μ = (μ A).toReal

        Alias of MeasureTheory.integral_condExp_indicator.


        Law of total probability using condExp as conditional probability.

        theorem MeasureTheory.ae_eq_condExp_of_forall_setIntegral_eq {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] {f g : αE} (hf : Integrable f μ) (hg_int_finite : ∀ (s : Set α), MeasurableSet sμ s < IntegrableOn g s μ) (hg_eq : ∀ (s : Set α), MeasurableSet sμ s < (x : α) in s, g x μ = (x : α) in s, f x μ) (hgm : AEStronglyMeasurable g μ) :
        g =ᶠ[ae μ] condExp m μ f

        Uniqueness of the conditional expectation If a function is a.e. m-measurable, verifies an integrability condition and has same integral as f on all m-measurable sets, then it is a.e. equal to μ[f|hm].

        @[deprecated MeasureTheory.ae_eq_condExp_of_forall_setIntegral_eq (since := "2025-01-21")]
        theorem MeasureTheory.ae_eq_condexp_of_forall_setIntegral_eq {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] {f g : αE} (hf : Integrable f μ) (hg_int_finite : ∀ (s : Set α), MeasurableSet sμ s < IntegrableOn g s μ) (hg_eq : ∀ (s : Set α), MeasurableSet sμ s < (x : α) in s, g x μ = (x : α) in s, f x μ) (hgm : AEStronglyMeasurable g μ) :
        g =ᶠ[ae μ] condExp m μ f

        Alias of MeasureTheory.ae_eq_condExp_of_forall_setIntegral_eq.


        Uniqueness of the conditional expectation If a function is a.e. m-measurable, verifies an integrability condition and has same integral as f on all m-measurable sets, then it is a.e. equal to μ[f|hm].

        theorem MeasureTheory.condExp_bot' {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [hμ : NeZero μ] (f : αE) :
        condExp μ f = fun (x : α) => (μ Set.univ).toReal⁻¹ (x : α), f x μ
        @[deprecated MeasureTheory.condExp_bot' (since := "2025-01-21")]
        theorem MeasureTheory.condexp_bot' {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [hμ : NeZero μ] (f : αE) :
        condExp μ f = fun (x : α) => (μ Set.univ).toReal⁻¹ (x : α), f x μ

        Alias of MeasureTheory.condExp_bot'.

        theorem MeasureTheory.condExp_bot_ae_eq {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : αE) :
        condExp μ f =ᶠ[ae μ] fun (x : α) => (μ Set.univ).toReal⁻¹ (x : α), f x μ
        @[deprecated MeasureTheory.condExp_bot_ae_eq (since := "2025-01-21")]
        theorem MeasureTheory.condexp_bot_ae_eq {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : αE) :
        condExp μ f =ᶠ[ae μ] fun (x : α) => (μ Set.univ).toReal⁻¹ (x : α), f x μ

        Alias of MeasureTheory.condExp_bot_ae_eq.

        theorem MeasureTheory.condExp_bot {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [IsProbabilityMeasure μ] (f : αE) :
        condExp μ f = fun (x : α) => (x : α), f x μ
        @[deprecated MeasureTheory.condExp_bot (since := "2025-01-21")]
        theorem MeasureTheory.condexp_bot {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [IsProbabilityMeasure μ] (f : αE) :
        condExp μ f = fun (x : α) => (x : α), f x μ

        Alias of MeasureTheory.condExp_bot.

        theorem MeasureTheory.condExp_add {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : Integrable f μ) (hg : Integrable g μ) (m : MeasurableSpace α) :
        condExp m μ (f + g) =ᶠ[ae μ] condExp m μ f + condExp m μ g
        @[deprecated MeasureTheory.condExp_add (since := "2025-01-21")]
        theorem MeasureTheory.condexp_add {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : Integrable f μ) (hg : Integrable g μ) (m : MeasurableSpace α) :
        condExp m μ (f + g) =ᶠ[ae μ] condExp m μ f + condExp m μ g

        Alias of MeasureTheory.condExp_add.

        theorem MeasureTheory.condExp_finset_sum {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ι : Type u_5} {s : Finset ι} {f : ιαE} (hf : is, Integrable (f i) μ) (m : MeasurableSpace α) :
        condExp m μ (∑ is, f i) =ᶠ[ae μ] is, condExp m μ (f i)
        @[deprecated MeasureTheory.condExp_finset_sum (since := "2025-01-21")]
        theorem MeasureTheory.condexp_finset_sum {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ι : Type u_5} {s : Finset ι} {f : ιαE} (hf : is, Integrable (f i) μ) (m : MeasurableSpace α) :
        condExp m μ (∑ is, f i) =ᶠ[ae μ] is, condExp m μ (f i)

        Alias of MeasureTheory.condExp_finset_sum.

        theorem MeasureTheory.condExp_smul {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [NormedSpace 𝕜 E] (c : 𝕜) (f : αE) (m : MeasurableSpace α) :
        condExp m μ (c f) =ᶠ[ae μ] c condExp m μ f
        @[deprecated MeasureTheory.condExp_smul (since := "2025-01-21")]
        theorem MeasureTheory.condexp_smul {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [NormedSpace 𝕜 E] (c : 𝕜) (f : αE) (m : MeasurableSpace α) :
        condExp m μ (c f) =ᶠ[ae μ] c condExp m μ f

        Alias of MeasureTheory.condExp_smul.

        theorem MeasureTheory.condExp_neg {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : αE) (m : MeasurableSpace α) :
        condExp m μ (-f) =ᶠ[ae μ] -condExp m μ f
        @[deprecated MeasureTheory.condExp_neg (since := "2025-01-21")]
        theorem MeasureTheory.condexp_neg {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : αE) (m : MeasurableSpace α) :
        condExp m μ (-f) =ᶠ[ae μ] -condExp m μ f

        Alias of MeasureTheory.condExp_neg.

        theorem MeasureTheory.condExp_sub {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : Integrable f μ) (hg : Integrable g μ) (m : MeasurableSpace α) :
        condExp m μ (f - g) =ᶠ[ae μ] condExp m μ f - condExp m μ g
        @[deprecated MeasureTheory.condExp_sub (since := "2025-01-21")]
        theorem MeasureTheory.condexp_sub {α : Type u_1} {E : Type u_3} {m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (hf : Integrable f μ) (hg : Integrable g μ) (m : MeasurableSpace α) :
        condExp m μ (f - g) =ᶠ[ae μ] condExp m μ f - condExp m μ g

        Alias of MeasureTheory.condExp_sub.

        theorem MeasureTheory.condExp_condExp_of_le {α : Type u_1} {E : Type u_3} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m₁ m₂ m₀ : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ m₂) (hm₂ : m₂ m₀) [SigmaFinite (μ.trim hm₂)] :
        condExp m₁ μ (condExp m₂ μ f) =ᶠ[ae μ] condExp m₁ μ f

        Tower property of the conditional expectation.

        Taking the m₂-conditional expectation then the m₁-conditional expectation, where m₁ is a smaller σ-algebra, is the same as taking the m₁-conditional expectation directly.

        @[deprecated MeasureTheory.condExp_condExp_of_le (since := "2025-01-21")]
        theorem MeasureTheory.condexp_condexp_of_le {α : Type u_1} {E : Type u_3} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m₁ m₂ m₀ : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ m₂) (hm₂ : m₂ m₀) [SigmaFinite (μ.trim hm₂)] :
        condExp m₁ μ (condExp m₂ μ f) =ᶠ[ae μ] condExp m₁ μ f

        Alias of MeasureTheory.condExp_condExp_of_le.


        Tower property of the conditional expectation.

        Taking the m₂-conditional expectation then the m₁-conditional expectation, where m₁ is a smaller σ-algebra, is the same as taking the m₁-conditional expectation directly.

        theorem MeasureTheory.MemLp.condExpL2_ae_eq_condExp' {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace 𝕜 E] (hm : m m₀) (hf1 : Integrable f μ) (hf2 : MemLp f 2 μ) [SigmaFinite (μ.trim hm)] :
        ((condExpL2 E 𝕜 hm) (toLp f hf2)) =ᶠ[ae μ] condExp m μ f
        @[deprecated MeasureTheory.MemLp.condExpL2_ae_eq_condExp' (since := "2025-02-21")]
        theorem MeasureTheory.Memℒp.condExpL2_ae_eq_condExp' {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace 𝕜 E] (hm : m m₀) (hf1 : Integrable f μ) (hf2 : MemLp f 2 μ) [SigmaFinite (μ.trim hm)] :
        ((condExpL2 E 𝕜 hm) (MemLp.toLp f hf2)) =ᶠ[ae μ] MeasureTheory.condExp m μ f

        Alias of MeasureTheory.MemLp.condExpL2_ae_eq_condExp'.

        theorem MeasureTheory.MemLp.condExpL2_ae_eq_condExp {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace 𝕜 E] (hm : m m₀) (hf : MemLp f 2 μ) [IsFiniteMeasure μ] :
        ((condExpL2 E 𝕜 hm) (toLp f hf)) =ᶠ[ae μ] condExp m μ f
        @[deprecated MeasureTheory.MemLp.condExpL2_ae_eq_condExp (since := "2025-02-21")]
        theorem MeasureTheory.Memℒp.condExpL2_ae_eq_condExp {α : Type u_1} {E : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace 𝕜 E] (hm : m m₀) (hf : MemLp f 2 μ) [IsFiniteMeasure μ] :
        ((condExpL2 E 𝕜 hm) (MemLp.toLp f hf)) =ᶠ[ae μ] MeasureTheory.condExp m μ f

        Alias of MeasureTheory.MemLp.condExpL2_ae_eq_condExp.

        theorem MeasureTheory.eLpNorm_condExp_le {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace E] :
        eLpNorm (condExp m μ f) 2 μ eLpNorm f 2 μ
        theorem MeasureTheory.MemLp.condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace E] (hf : MemLp f 2 μ) :
        MemLp (condExp m μ f) 2 μ
        @[deprecated MeasureTheory.MemLp.condExp (since := "2025-02-21")]
        theorem MeasureTheory.Memℒp.condExp {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [InnerProductSpace E] (hf : MemLp f 2 μ) :

        Alias of MeasureTheory.MemLp.condExp.

        @[simp]
        theorem MeasureTheory.condExp_ofNat {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} {R : Type u_5} [NormedRing R] [NormedSpace R] [CompleteSpace R] (n : ) [n.AtLeastTwo] (f : αR) :
        theorem MeasureTheory.tendsto_condExpL1_of_dominated_convergence {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] {fs : αE} {f : αE} (bound_fs : α) (hfs_meas : ∀ (n : ), AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, fs n x bound_fs x) (hfs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => fs n x) Filter.atTop (nhds (f x))) :
        Filter.Tendsto (fun (n : ) => condExpL1 hm μ (fs n)) Filter.atTop (nhds (condExpL1 hm μ f))

        Lebesgue dominated convergence theorem: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by condExpL1.

        @[deprecated MeasureTheory.tendsto_condExpL1_of_dominated_convergence (since := "2025-01-21")]
        theorem MeasureTheory.tendsto_condexpL1_of_dominated_convergence {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] (hm : m m₀) [SigmaFinite (μ.trim hm)] {fs : αE} {f : αE} (bound_fs : α) (hfs_meas : ∀ (n : ), AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, fs n x bound_fs x) (hfs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => fs n x) Filter.atTop (nhds (f x))) :
        Filter.Tendsto (fun (n : ) => condExpL1 hm μ (fs n)) Filter.atTop (nhds (condExpL1 hm μ f))

        Alias of MeasureTheory.tendsto_condExpL1_of_dominated_convergence.


        Lebesgue dominated convergence theorem: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by condExpL1.

        theorem MeasureTheory.tendsto_condExp_unique {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] (fs gs : αE) (f g : αE) (hfs_int : ∀ (n : ), Integrable (fs n) μ) (hgs_int : ∀ (n : ), Integrable (gs n) μ) (hfs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => fs n x) Filter.atTop (nhds (f x))) (hgs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => gs n x) Filter.atTop (nhds (g x))) (bound_fs : α) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, fs n x bound_fs x) (hgs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, gs n x bound_gs x) (hfg : ∀ (n : ), condExp m μ (fs n) =ᶠ[ae μ] condExp m μ (gs n)) :
        condExp m μ f =ᶠ[ae μ] condExp m μ g

        If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal.

        @[deprecated MeasureTheory.tendsto_condExp_unique (since := "2025-01-21")]
        theorem MeasureTheory.tendsto_condexp_unique {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] (fs gs : αE) (f g : αE) (hfs_int : ∀ (n : ), Integrable (fs n) μ) (hgs_int : ∀ (n : ), Integrable (gs n) μ) (hfs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => fs n x) Filter.atTop (nhds (f x))) (hgs : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => gs n x) Filter.atTop (nhds (g x))) (bound_fs : α) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, fs n x bound_fs x) (hgs_bound : ∀ (n : ), ∀ᵐ (x : α) μ, gs n x bound_gs x) (hfg : ∀ (n : ), condExp m μ (fs n) =ᶠ[ae μ] condExp m μ (gs n)) :
        condExp m μ f =ᶠ[ae μ] condExp m μ g

        Alias of MeasureTheory.tendsto_condExp_unique.


        If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal.

        theorem MeasureTheory.condExp_mono {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᶠ[ae μ] g) :
        condExp m μ f ≤ᶠ[ae μ] condExp m μ g
        theorem MeasureTheory.condExp_nonneg {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : 0 ≤ᶠ[ae μ] f) :
        0 ≤ᶠ[ae μ] condExp m μ f
        theorem MeasureTheory.condExp_nonpos {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : f ≤ᶠ[ae μ] 0) :
        condExp m μ f ≤ᶠ[ae μ] 0
        @[deprecated MeasureTheory.condExp_mono (since := "2025-01-21")]
        theorem MeasureTheory.condexp_mono {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f g : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᶠ[ae μ] g) :
        condExp m μ f ≤ᶠ[ae μ] condExp m μ g

        Alias of MeasureTheory.condExp_mono.

        @[deprecated MeasureTheory.condExp_nonneg (since := "2025-01-21")]
        theorem MeasureTheory.condexp_nonneg {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : 0 ≤ᶠ[ae μ] f) :
        0 ≤ᶠ[ae μ] condExp m μ f

        Alias of MeasureTheory.condExp_nonneg.

        @[deprecated MeasureTheory.condExp_nonpos (since := "2025-01-21")]
        theorem MeasureTheory.condexp_nonpos {α : Type u_1} {E : Type u_3} {m m₀ : MeasurableSpace α} {μ : Measure α} {f : αE} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace E] [OrderedSMul E] (hf : f ≤ᶠ[ae μ] 0) :
        condExp m μ f ≤ᶠ[ae μ] 0

        Alias of MeasureTheory.condExp_nonpos.