Documentation

Mathlib.MeasureTheory.Function.ConvergenceInMeasure

Convergence in measure #

We define convergence in measure which is one of the many notions of convergence in probability. A sequence of functions f is said to converge in measure to some function g if for all ε > 0, the measure of the set {x | ε ≤ dist (f i x) (g x)} tends to 0 as i converges along some given filter l.

Convergence in measure is most notably used in the formulation of the weak law of large numbers and is also useful in theorems such as the Vitali convergence theorem. This file provides some basic lemmas for working with convergence in measure and establishes some relations between convergence in measure and other notions of convergence.

Main definitions #

Main results #

def MeasureTheory.TendstoInMeasure {α : Type u_1} {ι : Type u_2} {E : Type u_4} [Dist E] {x✝ : MeasurableSpace α} (μ : Measure α) (f : ιαE) (l : Filter ι) (g : αE) :

A sequence of functions f is said to converge in measure to some function g if for all ε > 0, the measure of the set {x | ε ≤ dist (f i x) (g x)} tends to 0 as i converges along some given filter l.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.tendstoInMeasure_iff_norm {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [SeminormedAddCommGroup E] {l : Filter ι} {f : ιαE} {g : αE} :
    Iff (TendstoInMeasure μ f l g) (∀ (ε : Real), LT.lt 0 εFilter.Tendsto (fun (i : ι) => DFunLike.coe μ (setOf fun (x : α) => LE.le ε (Norm.norm (HSub.hSub (f i x) (g x))))) l (nhds 0))
    theorem MeasureTheory.tendstoInMeasure_iff_tendsto_toNNReal {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] [IsFiniteMeasure μ] {f : ιαE} {l : Filter ι} {g : αE} :
    Iff (TendstoInMeasure μ f l g) (∀ (ε : Real), LT.lt 0 εFilter.Tendsto (fun (i : ι) => (DFunLike.coe μ (setOf fun (x : α) => LE.le ε (Dist.dist (f i x) (g x)))).toNNReal) l (nhds 0))
    theorem MeasureTheory.TendstoInMeasure.mono {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {f : ιαE} {g : αE} {u v : Filter ι} (huv : LE.le v u) (hg : TendstoInMeasure μ f u g) :
    theorem MeasureTheory.TendstoInMeasure.comp {α : Type u_1} {ι : Type u_2} {κ : Type u_3} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {f : ιαE} {g : αE} {u : Filter ι} {v : Filter κ} {ns : κι} (hg : TendstoInMeasure μ f u g) (hns : Filter.Tendsto ns v u) :
    theorem MeasureTheory.TendstoInMeasure.congr' {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {l : Filter ι} {f f' : ιαE} {g g' : αE} (h_left : Filter.Eventually (fun (i : ι) => (ae μ).EventuallyEq (f i) (f' i)) l) (h_right : (ae μ).EventuallyEq g g') (h_tendsto : TendstoInMeasure μ f l g) :
    TendstoInMeasure μ f' l g'
    theorem MeasureTheory.TendstoInMeasure.congr {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {l : Filter ι} {f f' : ιαE} {g g' : αE} (h_left : ∀ (i : ι), (ae μ).EventuallyEq (f i) (f' i)) (h_right : (ae μ).EventuallyEq g g') (h_tendsto : TendstoInMeasure μ f l g) :
    TendstoInMeasure μ f' l g'
    theorem MeasureTheory.TendstoInMeasure.congr_left {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {l : Filter ι} {f f' : ιαE} {g : αE} (h : ∀ (i : ι), (ae μ).EventuallyEq (f i) (f' i)) (h_tendsto : TendstoInMeasure μ f l g) :
    theorem MeasureTheory.TendstoInMeasure.congr_right {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [Dist E] {l : Filter ι} {f : ιαE} {g g' : αE} (h : (ae μ).EventuallyEq g g') (h_tendsto : TendstoInMeasure μ f l g) :
    theorem MeasureTheory.tendstoInMeasure_of_tendsto_ae_of_stronglyMeasurable {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} [IsFiniteMeasure μ] (hf : ∀ (n : Nat), StronglyMeasurable (f n)) (hg : StronglyMeasurable g) (hfg : Filter.Eventually (fun (x : α) => Filter.Tendsto (fun (n : Nat) => f n x) Filter.atTop (nhds (g x))) (ae μ)) :

    Auxiliary lemma for tendstoInMeasure_of_tendsto_ae.

    theorem MeasureTheory.tendstoInMeasure_of_tendsto_ae {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} [IsFiniteMeasure μ] (hf : ∀ (n : Nat), AEStronglyMeasurable (f n) μ) (hfg : Filter.Eventually (fun (x : α) => Filter.Tendsto (fun (n : Nat) => f n x) Filter.atTop (nhds (g x))) (ae μ)) :

    Convergence a.e. implies convergence in measure in a finite measure space.

    theorem MeasureTheory.ExistsSeqTendstoAe.exists_nat_measure_lt_two_inv {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) (n : Nat) :
    Exists fun (N : Nat) => ∀ (m_1 : Nat), GE.ge m_1 NLE.le (DFunLike.coe μ (setOf fun (x : α) => LE.le (HPow.hPow (Inv.inv 2) n) (Dist.dist (f m_1 x) (g x)))) (HPow.hPow (Inv.inv 2) n)
    noncomputable def MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeqAux {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) (n : Nat) :

    Given a sequence of functions f which converges in measure to g, seqTendstoAeSeqAux is a sequence such that ∀ m ≥ seqTendstoAeSeqAux n, μ {x | 2⁻¹ ^ n ≤ dist (f m x) (g x)} ≤ 2⁻¹ ^ n.

    Equations
    Instances For
      noncomputable def MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeq {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) :
      NatNat

      Transformation of seqTendstoAeSeqAux to makes sure it is strictly monotone.

      Equations
      Instances For
        theorem MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeq_succ {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) {n : Nat} :
        theorem MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeq_spec {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) (n k : Nat) (hn : LE.le (seqTendstoAeSeq hfg n) k) :
        LE.le (DFunLike.coe μ (setOf fun (x : α) => LE.le (HPow.hPow (Inv.inv 2) n) (Dist.dist (f k x) (g x)))) (HPow.hPow (Inv.inv 2) n)
        theorem MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeq_strictMono {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) :
        theorem MeasureTheory.TendstoInMeasure.exists_seq_tendsto_ae {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {f : NatαE} {g : αE} (hfg : TendstoInMeasure μ f Filter.atTop g) :
        Exists fun (ns : NatNat) => And (StrictMono ns) (Filter.Eventually (fun (x : α) => Filter.Tendsto (fun (i : Nat) => f (ns i) x) Filter.atTop (nhds (g x))) (ae μ))

        If f is a sequence of functions which converges in measure to g, then there exists a subsequence of f which converges a.e. to g.

        theorem MeasureTheory.TendstoInMeasure.exists_seq_tendstoInMeasure_atTop {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ιαE} {g : αE} (hfg : TendstoInMeasure μ f u g) :
        Exists fun (ns : Natι) => And (Filter.Tendsto ns Filter.atTop u) (TendstoInMeasure μ (fun (n : Nat) => f (ns n)) Filter.atTop g)
        theorem MeasureTheory.TendstoInMeasure.exists_seq_tendsto_ae' {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ιαE} {g : αE} (hfg : TendstoInMeasure μ f u g) :
        Exists fun (ns : Natι) => And (Filter.Tendsto ns Filter.atTop u) (Filter.Eventually (fun (x : α) => Filter.Tendsto (fun (i : Nat) => f (ns i) x) Filter.atTop (nhds (g x))) (ae μ))
        theorem MeasureTheory.exists_seq_tendstoInMeasure_atTop_iff {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] [IsFiniteMeasure μ] {f : NatαE} (hf : ∀ (n : Nat), AEStronglyMeasurable (f n) μ) {g : αE} :
        Iff (TendstoInMeasure μ f Filter.atTop g) (∀ (ns : NatNat), StrictMono nsExists fun (ns' : NatNat) => And (StrictMono ns') (Filter.Eventually (fun (ω : α) => Filter.Tendsto (fun (i : Nat) => f (ns (ns' i)) ω) Filter.atTop (nhds (g ω))) (ae μ)))

        TendstoInMeasure is equivalent to every subsequence having another subsequence which converges almost surely.

        theorem MeasureTheory.tendstoInMeasure_ae_unique {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MetricSpace E] {g h : αE} {f : ιαE} {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] (hg : TendstoInMeasure μ f u g) (hh : TendstoInMeasure μ f u h) :
        (ae μ).EventuallyEq g h

        The limit in measure is ae unique.

        theorem MeasureTheory.TendstoInMeasure.aemeasurable {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [MeasurableSpace E] [NormedAddCommGroup E] [BorelSpace E] {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ιαE} {g : αE} (hf : ∀ (n : ι), AEMeasurable (f n) μ) (h_tendsto : TendstoInMeasure μ f u g) :
        theorem MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_stronglyMeasurable {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : ιαE} {g : αE} (hp_ne_zero : Ne p 0) (hp_ne_top : Ne p Top.top) (hf : ∀ (n : ι), StronglyMeasurable (f n)) (hg : StronglyMeasurable g) {l : Filter ι} (hfg : Filter.Tendsto (fun (n : ι) => eLpNorm (HSub.hSub (f n) g) p μ) l (nhds 0)) :

        This lemma is superseded by MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm where we allow p = ∞ and only require AEStronglyMeasurable.

        theorem MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_ne_top {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : ιαE} {g : αE} (hp_ne_zero : Ne p 0) (hp_ne_top : Ne p Top.top) (hf : ∀ (n : ι), AEStronglyMeasurable (f n) μ) (hg : AEStronglyMeasurable g μ) {l : Filter ι} (hfg : Filter.Tendsto (fun (n : ι) => eLpNorm (HSub.hSub (f n) g) p μ) l (nhds 0)) :

        This lemma is superseded by MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm where we allow p = ∞.

        theorem MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_top {α : Type u_1} {ι : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : ιαE} {g : αE} {l : Filter ι} (hfg : Filter.Tendsto (fun (n : ι) => eLpNorm (HSub.hSub (f n) g) Top.top μ) l (nhds 0)) :

        See also MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm which work for general Lp-convergence for all p ≠ 0.

        theorem MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : ιαE} {g : αE} {l : Filter ι} (hp_ne_zero : Ne p 0) (hf : ∀ (n : ι), AEStronglyMeasurable (f n) μ) (hg : AEStronglyMeasurable g μ) (hfg : Filter.Tendsto (fun (n : ι) => eLpNorm (HSub.hSub (f n) g) p μ) l (nhds 0)) :

        Convergence in Lp implies convergence in measure.

        theorem MeasureTheory.tendstoInMeasure_of_tendsto_Lp {α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} [hp : Fact (LE.le 1 p)] {f : ιSubtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x} {g : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x} {l : Filter ι} (hfg : Filter.Tendsto f l (nhds g)) :
        TendstoInMeasure μ (fun (n : ι) => (f n).val.cast) l g.val.cast

        Convergence in Lp implies convergence in measure.