Documentation

Mathlib.ModelTheory.Definability

Definable Sets #

This file defines what it means for a set over a first-order structure to be definable.

Main Definitions #

Main Results #

def Set.Definable {M : Type w} (A : Set M) (L : FirstOrder.Language) [L.Structure M] {α : Type u₁} (s : Set (αM)) :

A subset of a finite Cartesian product of a structure is definable over a set A when membership in the set is given by a first-order formula with parameters from A.

Equations
Instances For
    theorem Set.Definable.map_expansion {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} {L' : FirstOrder.Language} [L'.Structure M] (h : A.Definable L s) (φ : L →ᴸ L') [φ.IsExpansionOn M] :
    A.Definable L' s
    theorem Set.definable_iff_exists_formula_sum {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} :
    A.Definable L s ∃ (φ : L.Formula (A α)), s = {v : αM | φ.Realize (Sum.elim Subtype.val v)}
    theorem Set.empty_definable_iff {M : Type w} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} :
    .Definable L s ∃ (φ : L.Formula α), s = setOf φ.Realize
    theorem Set.definable_iff_empty_definable_with_params {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} :
    theorem Set.Definable.mono {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {B : Set M} {s : Set (αM)} (hAs : A.Definable L s) (hAB : A B) :
    B.Definable L s
    @[simp]
    theorem Set.definable_empty {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} :
    @[simp]
    theorem Set.definable_univ {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} :
    @[simp]
    theorem Set.Definable.inter {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {f g : Set (αM)} (hf : A.Definable L f) (hg : A.Definable L g) :
    A.Definable L (f g)
    @[simp]
    theorem Set.Definable.union {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {f g : Set (αM)} (hf : A.Definable L f) (hg : A.Definable L g) :
    A.Definable L (f g)
    theorem Set.definable_finset_inf {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (s.inf f)
    theorem Set.definable_finset_sup {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (s.sup f)
    theorem Set.definable_biInter_finset {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (⋂ is, f i)
    @[deprecated Set.definable_biInter_finset (since := "2025-08-28")]
    theorem Set.definable_finset_biInter {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (⋂ is, f i)

    Alias of Set.definable_biInter_finset.

    theorem Set.definable_biUnion_finset {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (⋃ is, f i)
    @[deprecated Set.definable_biUnion_finset (since := "2025-08-28")]
    theorem Set.definable_finset_biUnion {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {ι : Type u_2} {f : ιSet (αM)} (hf : ∀ (i : ι), A.Definable L (f i)) (s : Finset ι) :
    A.Definable L (⋃ is, f i)

    Alias of Set.definable_biUnion_finset.

    @[simp]
    theorem Set.Definable.compl {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} (hf : A.Definable L s) :
    @[simp]
    theorem Set.Definable.sdiff {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s t : Set (αM)} (hs : A.Definable L s) (ht : A.Definable L t) :
    A.Definable L (s \ t)
    @[simp]
    theorem Set.Definable.himp {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s t : Set (αM)} (hs : A.Definable L s) (ht : A.Definable L t) :
    A.Definable L (s t)
    theorem Set.Definable.preimage_comp {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {β : Type u_1} (f : αβ) {s : Set (αM)} (h : A.Definable L s) :
    A.Definable L ((fun (g : βM) => g f) ⁻¹' s)
    theorem Set.Definable.image_comp_equiv {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {β : Type u_1} {s : Set (βM)} (h : A.Definable L s) (f : α β) :
    A.Definable L ((fun (g : βM) => g f) '' s)
    theorem Set.definable_iff_finitely_definable {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {s : Set (αM)} :
    A.Definable L s ∃ (A0 : Finset M), A0 A (↑A0).Definable L s
    theorem Set.Definable.image_comp_sumInl_fin {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} (m : ) {s : Set (α Fin mM)} (h : A.Definable L s) :
    A.Definable L ((fun (g : α Fin mM) => g Sum.inl) '' s)

    This lemma is only intended as a helper for Definable.image_comp.

    theorem Set.Definable.image_comp_embedding {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {β : Type u_1} {s : Set (βM)} (h : A.Definable L s) (f : α β) [Finite β] :
    A.Definable L ((fun (g : βM) => g f) '' s)

    Shows that definability is closed under finite projections.

    theorem Set.Definable.image_comp {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {β : Type u_1} {s : Set (βM)} (h : A.Definable L s) (f : αβ) [Finite α] [Finite β] :
    A.Definable L ((fun (g : βM) => g f) '' s)

    Shows that definability is closed under finite projections.

    def Set.Definable₁ {M : Type w} (A : Set M) (L : FirstOrder.Language) [L.Structure M] (s : Set M) :

    A 1-dimensional version of Definable, for Set M.

    Equations
    Instances For
      def Set.Definable₂ {M : Type w} (A : Set M) (L : FirstOrder.Language) [L.Structure M] (s : Set (M × M)) :

      A 2-dimensional version of Definable, for Set (M × M).

      Equations
      Instances For
        def FirstOrder.Language.DefinableSet (L : Language) {M : Type w} [L.Structure M] (A : Set M) (α : Type u₁) :
        Type (max 0 u₁ w)

        Definable sets are subsets of finite Cartesian products of a structure such that membership is given by a first-order formula.

        Equations
        Instances For
          instance FirstOrder.Language.DefinableSet.instSetLike {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          SetLike (L.DefinableSet A α) (αM)
          Equations
          instance FirstOrder.Language.DefinableSet.instSup {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Max (L.DefinableSet A α)
          Equations
          instance FirstOrder.Language.DefinableSet.instInf {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Min (L.DefinableSet A α)
          Equations
          instance FirstOrder.Language.DefinableSet.instCompl {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Equations
          instance FirstOrder.Language.DefinableSet.instSDiff {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Equations
          noncomputable instance FirstOrder.Language.DefinableSet.instHImp {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Equations
          theorem FirstOrder.Language.DefinableSet.le_iff {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {s t : L.DefinableSet A α} :
          s t s t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.mem_top {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {x : αM} :
          @[simp]
          theorem FirstOrder.Language.DefinableSet.notMem_bot {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {x : αM} :
          x
          @[simp]
          theorem FirstOrder.Language.DefinableSet.mem_sup {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {s t : L.DefinableSet A α} {x : αM} :
          x st x s x t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.mem_inf {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {s t : L.DefinableSet A α} {x : αM} :
          x st x s x t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.mem_compl {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {s : L.DefinableSet A α} {x : αM} :
          x s xs
          @[simp]
          theorem FirstOrder.Language.DefinableSet.mem_sdiff {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} {s t : L.DefinableSet A α} {x : αM} :
          x s \ t x s xt
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_top {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_bot {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          =
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_sup {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} (s t : L.DefinableSet A α) :
          (st) = s t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_inf {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} (s t : L.DefinableSet A α) :
          (st) = s t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_compl {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} (s : L.DefinableSet A α) :
          s = (↑s)
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_sdiff {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} (s t : L.DefinableSet A α) :
          ↑(s \ t) = s \ t
          @[simp]
          theorem FirstOrder.Language.DefinableSet.coe_himp {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} (s t : L.DefinableSet A α) :
          ↑(s t) = s t
          noncomputable instance FirstOrder.Language.DefinableSet.instBooleanAlgebra {L : Language} {M : Type w} [L.Structure M] {A : Set M} {α : Type u₁} :
          Equations
          def Set.TermDefinable {M : Type w} (A : Set M) (L : FirstOrder.Language) [L.Structure M] {α : Type u₁} (f : (αM)M) :

          A function from a Cartesian power of a structure to that structure is term-definable over a set A when the value of the function is given by a term with constants A.

          Equations
          Instances For
            theorem Set.TermDefinable.definable_tupleGraph {M : Type w} (A : Set M) (L : FirstOrder.Language) [L.Structure M] {α : Type u₁} {f : (αM)M} (h : A.TermDefinable L f) :

            Every TermDefinable function has a tupleGraph that is definable.

            theorem Set.TermDefinable.map_expansion {M : Type w} {A : Set M} {L : FirstOrder.Language} {L' : FirstOrder.Language} [L.Structure M] [L'.Structure M] {α : Type u₁} {f : (αM)M} (h : A.TermDefinable L f) (φ : L →ᴸ L') [φ.IsExpansionOn M] :
            theorem Set.termDefinable_empty_iff {M : Type w} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {f : (αM)M} :
            .TermDefinable L f ∃ (φ : L.Term α), f = fun (v : αM) => FirstOrder.Language.Term.realize v φ
            theorem Set.termDefinable_empty_withConstants_iff {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {f : (αM)M} :
            theorem Set.TermDefinable.mono {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {B : Set M} {f : (αM)M} (h : A.TermDefinable L f) (hAB : A B) :
            theorem Set.TermDefinable.trans {M : Type w} {A : Set M} {L : FirstOrder.Language} {L' : FirstOrder.Language} [L.Structure M] [L'.Structure M] {β : Type u_1} {f : (βM)M} (h₁ : A.TermDefinable L f) (h₂ : ∀ {n : } (g : (L.withConstants A).Functions n), A.TermDefinable L' fun (v : Fin nM) => FirstOrder.Language.Term.realize v g.term) :

            TermDefinable is transitive. If f is TermDefinable in a structure S on L, and all of the functions' realizations on S are TermDefinable on a structure T on L', then f is TermDefinable on T in L'.

            def Set.TermDefinable₁ {M : Type w} {A : Set M} (L : FirstOrder.Language) [L.Structure M] (f : MM) :

            A function from a structure to itself is term-definable over a set A when the value of the function is given by a term with constants A. Like TermDefinable but specialized for unary functions in order to write M → M instead of (Unit → M) → M.

            Equations
            Instances For
              theorem Set.termDefinable₁_iff_termDefinable {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] (f : MM) :
              TermDefinable₁ L f A.TermDefinable L fun (v : UnitM) => f (v ())

              TermDefinable₁ is defined as TermDefinable on the Unit index type.

              theorem Set.TermDefinable.termDefinable₁ {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] (f : MM) :
              (A.TermDefinable L fun (v : UnitM) => f (v ()))TermDefinable₁ L f

              Alias of the reverse direction of Set.termDefinable₁_iff_termDefinable.


              TermDefinable₁ is defined as TermDefinable on the Unit index type.

              theorem Set.TermDefinable₁.termDefinable {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] (f : MM) :
              TermDefinable₁ L fA.TermDefinable L fun (v : UnitM) => f (v ())

              Alias of the forward direction of Set.termDefinable₁_iff_termDefinable.


              TermDefinable₁ is defined as TermDefinable on the Unit index type.

              theorem Set.termDefinable₁_iff_exists_term {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {f : MM} :

              A TermDefinable₁ function has a graph that's Definable₂.

              The identity function is TermDefinable₁

              theorem Set.TermDefinable.const {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} (C : (L.withConstants A).Constants) :
              A.TermDefinable L (Function.const (αM) C)

              Constant functions are TermDefinable, assuming the constant value is a language constant.

              Constant functions are TermDefinable₁, assuming the constant value is a language constant.

              theorem Set.TermDefinable.comp {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {β : Type u_1} {f : (αM)M} {g : α(βM)M} (hf : A.TermDefinable L f) (hg : ∀ (i : α), A.TermDefinable L (g i)) :
              A.TermDefinable L fun (b : βM) => f fun (x : α) => g x b

              A k-ary TermDefinable function composed with k TermDefinable others is TermDefinable.

              theorem Set.TermDefinable₁.comp {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {f g : MM} (hf : TermDefinable₁ L f) (hg : TermDefinable₁ L g) :

              TermDefinable₁ functions are closed under composition.

              theorem Set.TermDefinable₁.comp_termDefinable {M : Type w} {A : Set M} {L : FirstOrder.Language} [L.Structure M] {α : Type u₁} {f : MM} {g : (αM)M} (hf : TermDefinable₁ L f) (hg : A.TermDefinable L g) :
              A.TermDefinable L (f g)

              A TermDefinable function postcomposed with TermDefinable₁ is TermDefinable.