Smooth functions whose integral calculates the values of polynomials #
In any space โแต
and given any N
, we construct a smooth function supported in the unit ball
whose integral against a multivariate polynomial P
of total degree at most N
is P 0
.
This is a test of the state of the library suggested by Martin Hairer.
def
SmoothSupportedOn
(๐ : Type u_2)
(E : Type u_3)
(F : Type u_4)
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(n : โโ)
(s : Set E)
:
Submodule ๐ (E โ F)
The set of smooth functions supported in a set s
, as a submodule of the space of functions.
Equations
Instances For
instance
SmoothSupportedOn.instFunLikeSubtypeForallMemSubmodule
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
:
FunLike (โฅ(SmoothSupportedOn ๐ E F n s)) E F
Equations
- SmoothSupportedOn.instFunLikeSubtypeForallMemSubmodule = { coe := Subtype.val, coe_injective' := โฏ }
@[simp]
theorem
SmoothSupportedOn.coe_mk
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
(f : E โ F)
(h : f โ SmoothSupportedOn ๐ E F n s)
:
โโจf, hโฉ = f
theorem
SmoothSupportedOn.tsupport_subset
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
(f : โฅ(SmoothSupportedOn ๐ E F n s))
:
theorem
SmoothSupportedOn.support_subset
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
(f : โฅ(SmoothSupportedOn ๐ E F n s))
:
Function.support โf โ s
theorem
SmoothSupportedOn.contDiff
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
(f : โฅ(SmoothSupportedOn ๐ E F n s))
:
ContDiff ๐ n โf
theorem
SmoothSupportedOn.continuous
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
{s : Set E}
(f : โฅ(SmoothSupportedOn ๐ E F n s))
:
Continuous โf
theorem
SmoothSupportedOn.hasCompactSupport
{๐ : Type u_2}
{E : Type u_3}
{F : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{n : โโ}
[ProperSpace E]
(f : โฅ(SmoothSupportedOn ๐ E F n (Metric.closedBall 0 1)))
:
HasCompactSupport โf
theorem
SmoothSupportedOn.integrable_eval_mul
{ฮน : Type u_1}
[Fintype ฮน]
(p : MvPolynomial ฮน โ)
(f : โฅ(SmoothSupportedOn โ (EuclideanSpace โ ฮน) โ โค (Metric.closedBall 0 1)))
:
MeasureTheory.Integrable (fun (x : EuclideanSpace โ ฮน) => (MvPolynomial.eval x) p * f x) MeasureTheory.volume
def
L
(ฮน : Type u_1)
[Fintype ฮน]
:
MvPolynomial ฮน โ โโ[โ] Module.Dual โ โฅ(SmoothSupportedOn โ (EuclideanSpace โ ฮน) โ โค (Metric.closedBall 0 1))
Interpreting a multivariate polynomial as an element of the dual of smooth functions supported in the unit ball, via integration against Lebesgue measure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
hairer
(N : โ)
(ฮน : Type u_2)
[Fintype ฮน]
:
โ (ฯ : EuclideanSpace โ ฮน โ โ),
tsupport ฯ โ Metric.closedBall 0 1 โง ContDiff โ โค ฯ โง โ (p : MvPolynomial ฮน โ),
p.totalDegree โค N โ โซ (x : EuclideanSpace โ ฮน), (MvPolynomial.eval x) p โข ฯ x = (MvPolynomial.eval 0) p