Documentation

Archive.Hairer

Smooth functions whose integral calculates the values of polynomials #

In any space โ„แตˆ and given any N, we construct a smooth function supported in the unit ball whose integral against a multivariate polynomial P of total degree at most N is P 0.

This is a test of the state of the library suggested by Martin Hairer.

def ContDiffSupportedOn (๐•œ : Type u_2) (E : Type u_3) (F : Type u_4) [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (n : โ„•โˆž) (s : Set E) :
Submodule ๐•œ (E โ†’ F)

The set of C^n functions supported in a set s, as a submodule of the space of functions.

Equations
Instances For
    instance ContDiffSupportedOn.instFunLikeSubtypeForallMemSubmodule {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} :
    FunLike (โ†ฅ(ContDiffSupportedOn ๐•œ E F n s)) E F
    Equations
    @[simp]
    theorem ContDiffSupportedOn.coe_mk {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} (f : E โ†’ F) (h : f โˆˆ ContDiffSupportedOn ๐•œ E F n s) :
    โ‡‘โŸจf, hโŸฉ = f
    theorem ContDiffSupportedOn.tsupport_subset {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} (f : โ†ฅ(ContDiffSupportedOn ๐•œ E F n s)) :
    tsupport โ‡‘f โŠ† s
    theorem ContDiffSupportedOn.support_subset {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} (f : โ†ฅ(ContDiffSupportedOn ๐•œ E F n s)) :
    theorem ContDiffSupportedOn.contDiff {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} (f : โ†ฅ(ContDiffSupportedOn ๐•œ E F n s)) :
    ContDiff ๐•œ โ†‘n โ‡‘f
    theorem ContDiffSupportedOn.continuous {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} {s : Set E} (f : โ†ฅ(ContDiffSupportedOn ๐•œ E F n s)) :
    Continuous โ‡‘f
    theorem ContDiffSupportedOn.hasCompactSupport {๐•œ : Type u_2} {E : Type u_3} {F : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•โˆž} [ProperSpace E] (f : โ†ฅ(ContDiffSupportedOn ๐•œ E F n (Metric.closedBall 0 1))) :

    Interpreting a multivariate polynomial as an element of the dual of smooth functions supported in the unit ball, via integration against Lebesgue measure.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem inj_L (ฮน : Type u_1) [Fintype ฮน] :
      Function.Injective โ‡‘(L ฮน)
      theorem hairer (N : โ„•) (ฮน : Type u_2) [Fintype ฮน] :
      โˆƒ (ฯ : EuclideanSpace โ„ ฮน โ†’ โ„), tsupport ฯ โŠ† Metric.closedBall 0 1 โˆง ContDiff โ„ (โ†‘โŠค) ฯ โˆง โˆ€ (p : MvPolynomial ฮน โ„), p.totalDegree โ‰ค N โ†’ โˆซ (x : EuclideanSpace โ„ ฮน), (MvPolynomial.eval x) p โ€ข ฯ x = (MvPolynomial.eval 0) p