Documentation

Mathlib.NumberTheory.AbelSummation

Abel's summation formula #

We prove several versions of Abel's summation formula.

Results #

Primed versions of the three results above are also stated for when the endpoints are Nat.

References #

theorem sum_mul_eq_sub_sub_integral_mul {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} {a b : } (ha : 0 a) (hab : a b) (hf_diff : tSet.Icc a b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc a b) MeasureTheory.volume) :
kFinset.Ioc a⌋₊ b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - f a * kFinset.Icc 0 a⌋₊, c k - (t : ) in Set.Ioc a b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Abel's summation formula.

theorem sum_mul_eq_sub_sub_integral_mul' {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} {n m : } (h : n m) (hf_diff : tSet.Icc n m, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc n m) MeasureTheory.volume) :
kFinset.Ioc n m, f k * c k = f m * kFinset.Icc 0 m, c k - f n * kFinset.Icc 0 n, c k - (t : ) in Set.Ioc n m, deriv f t * kFinset.Icc 0 t⌋₊, c k

A version of sum_mul_eq_sub_sub_integral_mul where the endpoints are Nat.

theorem sum_mul_eq_sub_integral_mul {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} {b : } (hb : 0 b) (hf_diff : tSet.Icc 0 b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 0 b) MeasureTheory.volume) :
kFinset.Icc 0 b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - (t : ) in Set.Ioc 0 b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Specialized version of sum_mul_eq_sub_sub_integral_mul for the case a = 0.

theorem sum_mul_eq_sub_integral_mul' {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (m : ) (hf_diff : tSet.Icc 0 m, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 0 m) MeasureTheory.volume) :
kFinset.Icc 0 m, f k * c k = f m * kFinset.Icc 0 m, c k - (t : ) in Set.Ioc 0 m, deriv f t * kFinset.Icc 0 t⌋₊, c k

A version of sum_mul_eq_sub_integral_mul where the endpoint is a Nat.

theorem sum_mul_eq_sub_integral_mul₀ {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hc : c 0 = 0) (b : ) (hf_diff : tSet.Icc 1 b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 1 b) MeasureTheory.volume) :
kFinset.Icc 0 b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - (t : ) in Set.Ioc 1 b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Specialized version of sum_mul_eq_sub_integral_mul when the first coefficient of the sequence c is equal to 0.

theorem sum_mul_eq_sub_integral_mul₀' {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hc : c 0 = 0) (m : ) (hf_diff : tSet.Icc 1 m, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 1 m) MeasureTheory.volume) :
kFinset.Icc 0 m, f k * c k = f m * kFinset.Icc 0 m, c k - (t : ) in Set.Ioc 1 m, deriv f t * kFinset.Icc 0 t⌋₊, c k

A version of sum_mul_eq_sub_integral_mul₀ where the endpoint is a Nat.

theorem tendsto_sum_mul_atTop_nhds_one_sub_integral {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hf_diff : tSet.Ici 0, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Ici 0) MeasureTheory.volume) {l : 𝕜} (h_lim : Filter.Tendsto (fun (n : ) => f n * kFinset.Icc 0 n, c k) Filter.atTop (nhds l)) {g : 𝕜} (hg_dom : (fun (t : ) => deriv f t * kFinset.Icc 0 t⌋₊, c k) =O[Filter.atTop] g) (hg_int : MeasureTheory.IntegrableAtFilter g Filter.atTop MeasureTheory.volume) :
Filter.Tendsto (fun (n : ) => kFinset.Icc 0 n, f k * c k) Filter.atTop (nhds (l - (t : ) in Set.Ioi 0, deriv f t * kFinset.Icc 0 t⌋₊, c k))
theorem tendsto_sum_mul_atTop_nhds_one_sub_integral₀ {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hc : c 0 = 0) (hf_diff : tSet.Ici 1, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Ici 1) MeasureTheory.volume) {l : 𝕜} (h_lim : Filter.Tendsto (fun (n : ) => f n * kFinset.Icc 0 n, c k) Filter.atTop (nhds l)) {g : } (hg_dom : (fun (t : ) => deriv f t * kFinset.Icc 0 t⌋₊, c k) =O[Filter.atTop] g) (hg_int : MeasureTheory.IntegrableAtFilter g Filter.atTop MeasureTheory.volume) :
Filter.Tendsto (fun (n : ) => kFinset.Icc 0 n, f k * c k) Filter.atTop (nhds (l - (t : ) in Set.Ioi 1, deriv f t * kFinset.Icc 0 t⌋₊, c k))
theorem summable_mul_of_bigO_atTop {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hf_diff : tSet.Ici 0, DifferentiableAt (fun (x : ) => f x) t) (hf_int : MeasureTheory.IntegrableOn (deriv fun (t : ) => f t) (Set.Ici 0) MeasureTheory.volume) (h_bdd : (fun (n : ) => f n * kFinset.Icc 0 n, c k) =O[Filter.atTop] fun (x : ) => 1) {g : } (hg₁ : (fun (t : ) => deriv (fun (t : ) => f t) t * kFinset.Icc 0 t⌋₊, c k) =O[Filter.atTop] g) (hg₂ : MeasureTheory.IntegrableAtFilter g Filter.atTop MeasureTheory.volume) :
Summable fun (n : ) => f n * c n
theorem summable_mul_of_bigO_atTop' {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hf_diff : tSet.Ici 1, DifferentiableAt (fun (x : ) => f x) t) (hf_int : MeasureTheory.IntegrableOn (deriv fun (t : ) => f t) (Set.Ici 1) MeasureTheory.volume) (h_bdd : (fun (n : ) => f n * kFinset.Icc 1 n, c k) =O[Filter.atTop] fun (x : ) => 1) {g : } (hg₁ : (fun (t : ) => deriv (fun (t : ) => f t) t * kFinset.Icc 1 t⌋₊, c k) =O[Filter.atTop] g) (hg₂ : MeasureTheory.IntegrableAtFilter g Filter.atTop MeasureTheory.volume) :
Summable fun (n : ) => f n * c n

A version of summable_mul_of_bigO_atTop that can be useful to avoid difficulties near zero.