Abel's summation formula #
We prove several versions of Abel's summation formula.
Results #
sum_mul_eq_sub_sub_integral_mul
: general statement of the formula for a sum between two (nonnegative) realsa
andb
.sum_mul_eq_sub_integral_mul
: a specialized version ofsum_mul_eq_sub_sub_integral_mul
for the casea = 0
.sum_mul_eq_sub_integral_mul₀
: a specialized version ofsum_mul_eq_sub_integral_mul
for when the first coefficient of the sequence is0
. This is useful forArithmeticFunction
.
Primed versions of the three results above are also stated for when the endpoints are Nat
.
tendsto_sum_mul_atTop_nhds_one_sub_integral
: limit version ofsum_mul_eq_sub_integral_mul
whena
tends to∞
.tendsto_sum_mul_atTop_nhds_one_sub_integral₀
: limit version ofsum_mul_eq_sub_integral_mul₀
whena
tends to∞
.summable_mul_of_bigO_atTop
: letc : ℕ → 𝕜
andf : ℝ → 𝕜
with𝕜 = ℝ
orℂ
, prove the summability ofn ↦ (c n) * (f n)
using Abel's formula under somebigO
assumptions at infinity.
References #
Abel's summation formula.
A version of sum_mul_eq_sub_sub_integral_mul
where the endpoints are Nat
.
Specialized version of sum_mul_eq_sub_sub_integral_mul
for the case a = 0
.
A version of sum_mul_eq_sub_integral_mul
where the endpoint is a Nat
.
Specialized version of sum_mul_eq_sub_integral_mul
when the first coefficient of the sequence
c
is equal to 0
.
A version of sum_mul_eq_sub_integral_mul₀
where the endpoint is a Nat
.
A version of summable_mul_of_bigO_atTop
that can be useful to avoid difficulties near zero.