Abel's summation formula #
We prove several versions of Abel's summation formula.
Results #
sum_mul_eq_sub_sub_integral_mul
: general statement of the formula for a sum between two (nonnegative) realsa
andb
.sum_mul_eq_sub_integral_mul
: a specialized version ofsum_mul_eq_sub_sub_integral_mul
for the casea = 0
.sum_mul_eq_sub_integral_mul
: a specialized version ofsum_mul_eq_sub_integral_mul
for when the first coefficient of the sequence is0
. This is useful forArithmeticFunction
.
References #
theorem
sum_mul_eq_sub_sub_integral_mul
{𝕜 : Type u_1}
[RCLike 𝕜]
(c : ℕ → 𝕜)
{f : ℝ → 𝕜}
{a b : ℝ}
(ha : 0 ≤ a)
(hab : a ≤ b)
(hf_diff : ∀ t ∈ Set.Icc a b, DifferentiableAt ℝ f t)
(hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc a b) MeasureTheory.volume)
:
Abel's summation formula.
theorem
sum_mul_eq_sub_integral_mul
{𝕜 : Type u_1}
[RCLike 𝕜]
(c : ℕ → 𝕜)
{f : ℝ → 𝕜}
{b : ℝ}
(hb : 0 ≤ b)
(hf_diff : ∀ t ∈ Set.Icc 0 b, DifferentiableAt ℝ f t)
(hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 0 b) MeasureTheory.volume)
:
Specialized version of sum_mul_eq_sub_sub_integral_mul
for the case a = 0
.
theorem
sum_mul_eq_sub_integral_mul'
{𝕜 : Type u_1}
[RCLike 𝕜]
(c : ℕ → 𝕜)
{f : ℝ → 𝕜}
(hc : c 0 = 0)
(b : ℝ)
(hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t)
(hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 1 b) MeasureTheory.volume)
:
Specialized version of sum_mul_eq_sub_integral_mul
when the first coefficient of the sequence
c
is equal to 0
.