Documentation

Mathlib.NumberTheory.AbelSummation

Abel's summation formula #

We prove several versions of Abel's summation formula.

Results #

References #

theorem sum_mul_eq_sub_sub_integral_mul {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} {a b : } (ha : 0 a) (hab : a b) (hf_diff : tSet.Icc a b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc a b) MeasureTheory.volume) :
kFinset.Ioc a⌋₊ b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - f a * kFinset.Icc 0 a⌋₊, c k - ∫ (t : ) in Set.Ioc a b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Abel's summation formula.

theorem sum_mul_eq_sub_integral_mul {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} {b : } (hb : 0 b) (hf_diff : tSet.Icc 0 b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 0 b) MeasureTheory.volume) :
kFinset.Icc 0 b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - ∫ (t : ) in Set.Ioc 0 b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Specialized version of sum_mul_eq_sub_sub_integral_mul for the case a = 0.

theorem sum_mul_eq_sub_integral_mul' {𝕜 : Type u_1} [RCLike 𝕜] (c : 𝕜) {f : 𝕜} (hc : c 0 = 0) (b : ) (hf_diff : tSet.Icc 1 b, DifferentiableAt f t) (hf_int : MeasureTheory.IntegrableOn (deriv f) (Set.Icc 1 b) MeasureTheory.volume) :
kFinset.Icc 0 b⌋₊, f k * c k = f b * kFinset.Icc 0 b⌋₊, c k - ∫ (t : ) in Set.Ioc 1 b, deriv f t * kFinset.Icc 0 t⌋₊, c k

Specialized version of sum_mul_eq_sub_integral_mul when the first coefficient of the sequence c is equal to 0.