Documentation

Mathlib.NumberTheory.LucasLehmer

The Lucas-Lehmer test for Mersenne primes. #

We define lucasLehmerResidue : Π p : ℕ, ZMod (2^p - 1), and prove lucasLehmerResidue p = 0 → Prime (mersenne p).

We construct a norm_num extension to calculate this residue to certify primality of Mersenne primes using lucas_lehmer_sufficiency.

TODO #

History #

This development began as a student project by Ainsley Pahljina, and was then cleaned up for mathlib by Kim Morrison. The tactic for certified computation of Lucas-Lehmer residues was provided by Mario Carneiro. This tactic was ported by Thomas Murrills to Lean 4, and then it was converted to a norm_num extension and made to use kernel reductions by Kyle Miller.

def mersenne (p : ) :

The Mersenne numbers, 2^p - 1.

Equations
Instances For
    @[simp]
    theorem mersenne_lt_mersenne {p q : } :
    theorem GCongr.mersenne_lt_mersenne {p q : } :
    p < qmersenne p < mersenne q

    Alias of the reverse direction of mersenne_lt_mersenne.

    @[simp]

    Alias of the reverse direction of mersenne_le_mersenne.

    @[simp]
    theorem mersenne_zero :
    @[simp]
    theorem mersenne_odd {p : } :
    @[simp]
    theorem mersenne_pos {p : } :
    0 < mersenne p 0 < p

    Alias of the reverse direction of mersenne_pos.

    @[simp]
    theorem one_lt_mersenne {p : } :
    1 < mersenne p 1 < p
    @[simp]
    theorem succ_mersenne (k : ) :
    mersenne k + 1 = 2 ^ k

    We now define three(!) different versions of the recurrence s (i+1) = (s i)^2 - 2.

    These versions take values either in , in ZMod (2^p - 1), or in but applying % (2^p - 1) at each step.

    They are each useful at different points in the proof, so we take a moment setting up the lemmas relating them.

    The recurrence s (i+1) = (s i)^2 - 2 in .

    Equations
    Instances For
      def LucasLehmer.sZMod (p a✝ : ) :
      ZMod (2 ^ p - 1)

      The recurrence s (i+1) = (s i)^2 - 2 in ZMod (2^p - 1).

      Equations
      Instances For
        def LucasLehmer.sMod (p : ) :

        The recurrence s (i+1) = ((s i)^2 - 2) % (2^p - 1) in .

        Equations
        Instances For
          theorem LucasLehmer.mersenne_int_pos {p : } (hp : p 0) :
          0 < 2 ^ p - 1
          theorem LucasLehmer.mersenne_int_ne_zero (p : ) (hp : p 0) :
          2 ^ p - 1 0
          theorem LucasLehmer.sMod_nonneg (p : ) (hp : p 0) (i : ) :
          theorem LucasLehmer.sMod_lt (p : ) (hp : p 0) (i : ) :
          LucasLehmer.sMod p i < 2 ^ p - 1
          theorem LucasLehmer.Int.natCast_pow_pred (b p : ) (w : 0 < b) :
          (b ^ p - 1) = b ^ p - 1
          @[deprecated LucasLehmer.Int.natCast_pow_pred (since := "2024-05-25")]
          theorem LucasLehmer.Int.coe_nat_pow_pred (b p : ) (w : 0 < b) :
          (b ^ p - 1) = b ^ p - 1

          Alias of LucasLehmer.Int.natCast_pow_pred.

          theorem LucasLehmer.Int.coe_nat_two_pow_pred (p : ) :
          (2 ^ p - 1) = 2 ^ p - 1

          The Lucas-Lehmer residue is s p (p-2) in ZMod (2^p - 1).

          Equations
          Instances For

            Lucas-Lehmer Test: a Mersenne number 2^p-1 is prime if and only if the Lucas-Lehmer residue s p (p-2) % (2^p - 1) is zero.

            Equations
            Instances For

              q is defined as the minimum factor of mersenne p, bundled as an ℕ+.

              Equations
              Instances For

                We construct the ring X q as ℤ/qℤ + √3 ℤ/qℤ.

                Equations
                Instances For
                  theorem LucasLehmer.X.ext {q : ℕ+} {x y : LucasLehmer.X q} (h₁ : x.1 = y.1) (h₂ : x.2 = y.2) :
                  x = y
                  @[simp]
                  theorem LucasLehmer.X.zero_fst {q : ℕ+} :
                  0.1 = 0
                  @[simp]
                  theorem LucasLehmer.X.zero_snd {q : ℕ+} :
                  0.2 = 0
                  @[simp]
                  theorem LucasLehmer.X.add_fst {q : ℕ+} (x y : LucasLehmer.X q) :
                  (x + y).1 = x.1 + y.1
                  @[simp]
                  theorem LucasLehmer.X.add_snd {q : ℕ+} (x y : LucasLehmer.X q) :
                  (x + y).2 = x.2 + y.2
                  @[simp]
                  theorem LucasLehmer.X.neg_fst {q : ℕ+} (x : LucasLehmer.X q) :
                  (-x).1 = -x.1
                  @[simp]
                  theorem LucasLehmer.X.neg_snd {q : ℕ+} (x : LucasLehmer.X q) :
                  (-x).2 = -x.2
                  Equations
                  @[simp]
                  theorem LucasLehmer.X.mul_fst {q : ℕ+} (x y : LucasLehmer.X q) :
                  (x * y).1 = x.1 * y.1 + 3 * x.2 * y.2
                  @[simp]
                  theorem LucasLehmer.X.mul_snd {q : ℕ+} (x y : LucasLehmer.X q) :
                  (x * y).2 = x.1 * y.2 + x.2 * y.1
                  Equations
                  @[simp]
                  theorem LucasLehmer.X.one_fst {q : ℕ+} :
                  1.1 = 1
                  @[simp]
                  theorem LucasLehmer.X.one_snd {q : ℕ+} :
                  1.2 = 0
                  Equations
                  @[simp]
                  theorem LucasLehmer.X.fst_natCast {q : ℕ+} (n : ) :
                  (↑n).1 = n
                  @[simp]
                  theorem LucasLehmer.X.snd_natCast {q : ℕ+} (n : ) :
                  (↑n).2 = 0
                  @[simp]
                  theorem LucasLehmer.X.ofNat_fst {q : ℕ+} (n : ) [n.AtLeastTwo] :
                  @[simp]
                  theorem LucasLehmer.X.ofNat_snd {q : ℕ+} (n : ) [n.AtLeastTwo] :
                  (OfNat.ofNat n).2 = 0
                  theorem LucasLehmer.X.left_distrib {q : ℕ+} (x y z : LucasLehmer.X q) :
                  x * (y + z) = x * y + x * z
                  theorem LucasLehmer.X.right_distrib {q : ℕ+} (x y z : LucasLehmer.X q) :
                  (x + y) * z = x * z + y * z
                  @[simp]
                  theorem LucasLehmer.X.fst_intCast {q : ℕ+} (n : ) :
                  (↑n).1 = n
                  @[simp]
                  theorem LucasLehmer.X.snd_intCast {q : ℕ+} (n : ) :
                  (↑n).2 = 0
                  @[deprecated LucasLehmer.X.fst_natCast (since := "2024-05-25")]
                  theorem LucasLehmer.X.nat_coe_fst {q : ℕ+} (n : ) :
                  (↑n).1 = n

                  Alias of LucasLehmer.X.fst_natCast.

                  @[deprecated LucasLehmer.X.snd_natCast (since := "2024-05-25")]
                  theorem LucasLehmer.X.nat_coe_snd {q : ℕ+} (n : ) :
                  (↑n).2 = 0

                  Alias of LucasLehmer.X.snd_natCast.

                  @[deprecated LucasLehmer.X.fst_intCast (since := "2024-05-25")]
                  theorem LucasLehmer.X.int_coe_fst {q : ℕ+} (n : ) :
                  (↑n).1 = n

                  Alias of LucasLehmer.X.fst_intCast.

                  @[deprecated LucasLehmer.X.snd_intCast (since := "2024-05-25")]
                  theorem LucasLehmer.X.int_coe_snd {q : ℕ+} (n : ) :
                  (↑n).2 = 0

                  Alias of LucasLehmer.X.snd_intCast.

                  theorem LucasLehmer.X.coe_mul {q : ℕ+} (n m : ) :
                  (n * m) = n * m
                  theorem LucasLehmer.X.coe_natCast {q : ℕ+} (n : ) :
                  n = n
                  @[deprecated LucasLehmer.X.coe_natCast (since := "2024-04-05")]
                  theorem LucasLehmer.X.coe_nat {q : ℕ+} (n : ) :
                  n = n

                  Alias of LucasLehmer.X.coe_natCast.

                  The cardinality of X is q^2.

                  theorem LucasLehmer.X.card_units_lt {q : ℕ+} (w : 1 < q) :

                  There are strictly fewer than q^2 units, since 0 is not a unit.

                  We define ω = 2 + √3.

                  Equations
                  Instances For

                    We define ωb = 2 - √3, which is the inverse of ω.

                    Equations
                    Instances For

                      A closed form for the recurrence relation.

                      Here and below, we introduce p' = p - 2, in order to avoid using subtraction in .

                      theorem LucasLehmer.two_lt_q (p' : ) :
                      2 < LucasLehmer.q (p' + 2)

                      If 1 < p, then q p, the smallest prime factor of mersenne p, is more than 2.

                      theorem LucasLehmer.ω_pow_formula (p' : ) (h : lucasLehmerResidue (p' + 2) = 0) :
                      ∃ (k : ), LucasLehmer.X.ω ^ 2 ^ (p' + 1) = k * (mersenne (p' + 2)) * LucasLehmer.X.ω ^ 2 ^ p' - 1
                      theorem LucasLehmer.mersenne_coe_X (p : ) :
                      (mersenne p) = 0

                      q is the minimum factor of mersenne p, so M p = 0 in X q.

                      theorem LucasLehmer.ω_pow_eq_neg_one (p' : ) (h : lucasLehmerResidue (p' + 2) = 0) :
                      LucasLehmer.X.ω ^ 2 ^ (p' + 1) = -1
                      theorem LucasLehmer.ω_pow_eq_one (p' : ) (h : lucasLehmerResidue (p' + 2) = 0) :
                      LucasLehmer.X.ω ^ 2 ^ (p' + 2) = 1

                      ω as an element of the group of units.

                      Equations
                      Instances For
                        theorem LucasLehmer.order_ω (p' : ) (h : lucasLehmerResidue (p' + 2) = 0) :
                        orderOf (LucasLehmer.ωUnit (p' + 2)) = 2 ^ (p' + 2)

                        The order of ω in the unit group is exactly 2^p.

                        theorem LucasLehmer.order_ineq (p' : ) (h : lucasLehmerResidue (p' + 2) = 0) :
                        2 ^ (p' + 2) < (LucasLehmer.q (p' + 2)) ^ 2

                        norm_num extension #

                        Next we define a norm_num extension that calculates LucasLehmerTest p for 1 < p. It makes use of a version of sMod that is specifically written to be reducible by the Lean 4 kernel, which has the capability of efficiently reducing natural number expressions. With this reduction in hand, it's a simple matter of applying the lemma LucasLehmer.residue_eq_zero_iff_sMod_eq_zero.

                        See [Archive/Examples/MersennePrimes.lean] for certifications of all Mersenne primes up through mersenne 4423.

                        Version of sMod that is -valued. One should have q = 2 ^ p - 1. This can be reduced by the kernel.

                        Equations
                        Instances For

                          Helper function for sMod''.

                          Equations
                          Instances For

                            Generalization of sModNat with arbitrary base case, useful for proving sModNatTR and sModNat agree.

                            Equations
                            Instances For

                              Calculate LucasLehmer.LucasLehmerTest p for 2 ≤ p by using kernel reduction for the sMod' function.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                This implementation works successfully to prove (2^4423 - 1).Prime, and all the Mersenne primes up to this point appear in [Archive/Examples/MersennePrimes.lean]. These can be calculated nearly instantly, and (2^9689 - 1).Prime only fails due to deep recursion.

                                (Note by kmill: the following notes were for the Lean 3 version. They seem like they could still be useful, so I'm leaving them here.)

                                There's still low hanging fruit available to do faster computations based on the formula

                                n ≡ (n % 2^p) + (n / 2^p) [MOD 2^p - 1]
                                

                                and the fact that % 2^p and / 2^p can be very efficient on the binary representation. Someone should do this, too!

                                theorem modEq_mersenne (n k : ) :
                                k k / 2 ^ n + k % 2 ^ n [MOD 2 ^ n - 1]