Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody

Convex Bodies #

The file contains the definitions of several convex bodies lying in the mixed space ℝ^r₁ × ℂ^r₂ associated to a number field of signature K and proves several existence theorems by applying Minkowski Convex Body Theorem to those.

Main definitions and results #

Tags #

number field, infinite places

@[reducible, inline]

The convex body defined by f: the set of points x : E such that ‖x w‖ < f w for all infinite places w.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem NumberField.mixedEmbedding.convexBodyLT_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) {x : K} :
    (mixedEmbedding K) x convexBodyLT K f ∀ (w : InfinitePlace K), w x < (f w)
    @[reducible, inline]

    The fudge factor that appears in the formula for the volume of convexBodyLT.

    Equations
    Instances For
      theorem NumberField.mixedEmbedding.convexBodyLT_volume (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) [NumberField K] :
      MeasureTheory.volume (convexBodyLT K f) = (convexBodyLTFactor K) * (∏ w : InfinitePlace K, f w ^ w.mult)

      The volume of (ConvexBodyLt K f) where convexBodyLT K f is the set of points x such that ‖x w‖ < f w for all infinite places w.

      theorem NumberField.mixedEmbedding.adjust_f (K : Type u_1) [Field K] {f : InfinitePlace KNNReal} [NumberField K] {w₁ : InfinitePlace K} (B : NNReal) (hf : ∀ (w : InfinitePlace K), w w₁f w 0) :
      ∃ (g : InfinitePlace KNNReal), (∀ (w : InfinitePlace K), w w₁g w = f w) w : InfinitePlace K, g w ^ w.mult = B

      This is a technical result: quite often, we want to impose conditions at all infinite places but one and choose the value at the remaining place so that we can apply exists_ne_zero_mem_ringOfIntegers_lt.

      @[reducible, inline]
      abbrev NumberField.mixedEmbedding.convexBodyLT' (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) :

      A version of convexBodyLT with an additional condition at a fixed complex place. This is needed to ensure the element constructed is not real, see for example exists_primitive_element_lt_of_isComplex.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem NumberField.mixedEmbedding.convexBodyLT'_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) {x : K} :
        (mixedEmbedding K) x convexBodyLT' K f w₀ (∀ (w : InfinitePlace K), w w₀w x < (f w)) |((↑w₀).embedding x).re| < 1 |((↑w₀).embedding x).im| < (f w₀) ^ 2
        theorem NumberField.mixedEmbedding.convexBodyLT'_neg_mem (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) (x : mixedSpace K) (hx : x convexBodyLT' K f w₀) :
        -x convexBodyLT' K f w₀
        theorem NumberField.mixedEmbedding.convexBodyLT'_convex (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) :
        @[reducible, inline]

        The fudge factor that appears in the formula for the volume of convexBodyLT'.

        Equations
        Instances For
          theorem NumberField.mixedEmbedding.convexBodyLT'_volume (K : Type u_1) [Field K] (f : InfinitePlace KNNReal) (w₀ : { w : InfinitePlace K // w.IsComplex }) [NumberField K] :
          MeasureTheory.volume (convexBodyLT' K f w₀) = (convexBodyLT'Factor K) * (∏ w : InfinitePlace K, f w ^ w.mult)
          @[reducible, inline]
          noncomputable abbrev NumberField.mixedEmbedding.convexBodySumFun {K : Type u_1} [Field K] [NumberField K] (x : mixedSpace K) :

          The function that sends x : mixedSpace K to ∑ w, ‖x.1 w‖ + 2 * ∑ w, ‖x.2 w‖. It defines a norm and it used to define convexBodySum.

          Equations
          Instances For
            theorem NumberField.mixedEmbedding.convexBodySumFun_apply' {K : Type u_1} [Field K] [NumberField K] (x : mixedSpace K) :
            convexBodySumFun x = w : { w : InfinitePlace K // w.IsReal }, x.1 w + 2 * w : { w : InfinitePlace K // w.IsComplex }, x.2 w
            @[reducible, inline]

            The convex body equal to the set of points x : mixedSpace K such that ∑ w real, ‖x w‖ + 2 * ∑ w complex, ‖x w‖ ≤ B.

            Equations
            Instances For
              theorem NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero (K : Type u_1) [Field K] [NumberField K] {B : } (hB : B 0) :
              MeasureTheory.volume (convexBodySum K B) = 0
              theorem NumberField.mixedEmbedding.convexBodySum_mem (K : Type u_1) [Field K] [NumberField K] (B : ) {x : K} :
              (mixedEmbedding K) x convexBodySum K B w : InfinitePlace K, w.mult * w x B
              @[reducible, inline]

              The fudge factor that appears in the formula for the volume of convexBodyLt.

              Equations
              Instances For

                The bound that appears in Minkowski Convex Body theorem, see MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure. See NumberField.mixedEmbedding.volume_fundamentalDomain_idealLatticeBasis_eq and NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis for the computation of volume (fundamentalDomain (idealLatticeBasis K)).

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ) (h : minkowskiBound K I < MeasureTheory.volume (convexBodyLT K f)) :
                  aI, a 0 ∀ (w : InfinitePlace K), w a < (f w)

                  Let I be a fractional ideal of K. Assume that f : InfinitePlace K → ℝ≥0 is such that minkowskiBound K I < volume (convexBodyLT K f) where convexBodyLT K f is the set of points x such that ‖x w‖ < f w for all infinite places w (see convexBodyLT_volume for the computation of this volume), then there exists a nonzero algebraic number a in I such that w a < f w for all infinite places w.

                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt' (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ) (w₀ : { w : InfinitePlace K // w.IsComplex }) (h : minkowskiBound K I < MeasureTheory.volume (convexBodyLT' K f w₀)) :
                  aI, a 0 (∀ (w : InfinitePlace K), w w₀w a < (f w)) |((↑w₀).embedding a).re| < 1 |((↑w₀).embedding a).im| < (f w₀) ^ 2

                  A version of exists_ne_zero_mem_ideal_lt where the absolute value of the real part of a is smaller than 1 at some fixed complex place. This is useful to ensure that a is not real.

                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (h : minkowskiBound K 1 < MeasureTheory.volume (convexBodyLT K f)) :
                  ∃ (a : RingOfIntegers K), a 0 ∀ (w : InfinitePlace K), w a < (f w)

                  A version of exists_ne_zero_mem_ideal_lt for the ring of integers of K.

                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt' (K : Type u_1) [Field K] [NumberField K] {f : InfinitePlace KNNReal} (w₀ : { w : InfinitePlace K // w.IsComplex }) (h : minkowskiBound K 1 < MeasureTheory.volume (convexBodyLT' K f w₀)) :
                  ∃ (a : RingOfIntegers K), a 0 (∀ (w : InfinitePlace K), w w₀w a < (f w)) |((↑w₀).embedding a).re| < 1 |((↑w₀).embedding a).im| < (f w₀) ^ 2

                  A version of exists_ne_zero_mem_ideal_lt' for the ring of integers of K.

                  theorem NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal (K : Type u_1) [Field K] [NumberField K] {w₀ : InfinitePlace K} (hw₀ : w₀.IsReal) {B : NNReal} (hB : minkowskiBound K 1 < (convexBodyLTFactor K) * B) :
                  ∃ (a : RingOfIntegers K), a = ∀ (w : InfinitePlace K), w a < (B 1)
                  theorem NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex (K : Type u_1) [Field K] [NumberField K] {w₀ : InfinitePlace K} (hw₀ : w₀.IsComplex) {B : NNReal} (hB : minkowskiBound K 1 < (convexBodyLT'Factor K) * B) :
                  ∃ (a : RingOfIntegers K), a = ∀ (w : InfinitePlace K), w a < (1 + B ^ 2)
                  theorem NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le (K : Type u_1) [Field K] [NumberField K] (I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ) {B : } (h : minkowskiBound K I MeasureTheory.volume (convexBodySum K B)) :
                  aI, a 0 |(Algebra.norm ) a| (B / (Module.finrank K)) ^ Module.finrank K

                  Let I be a fractional ideal of K. Assume that B : ℝ is such that minkowskiBound K I < volume (convexBodySum K B) where convexBodySum K B is the set of points x such that ∑ w real, ‖x w‖ + 2 * ∑ w complex, ‖x w‖ ≤ B (see convexBodySum_volume for the computation of this volume), then there exists a nonzero algebraic number a in I such that |Norm a| < (B / d) ^ d where d is the degree of K.