Volume of balls #
Let E be a finite-dimensional normed ℝ-vector space equipped with a Haar measure μ. We
prove that
μ (Metric.ball 0 1) = (∫ (x : E), Real.exp (- ‖x‖ ^ p) ∂μ) / Real.Gamma (finrank ℝ E / p + 1)
for any real number p with 0 < p, see MeasureTheory.measure_unitBall_eq_integral_div_gamma. We
also prove the corresponding result to compute μ {x : E | g x < 1} where g : E → ℝ is a function
defining a norm on E, see MeasureTheory.measure_lt_one_eq_integral_div_gamma.
Using these formulas, we compute the volume of the unit balls in several cases.
- MeasureTheory.volume_sum_rpow_lt/- MeasureTheory.volume_sum_rpow_le: volume of the open and closed balls for the norm- Lpover a real finite-dimensional vector space with- 1 ≤ p. These are computed as- volume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) < r}and- volume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) ≤ r}since the spaces- PiLpdo not have a- MeasureSpaceinstance.
- Complex.volume_sum_rpow_lt_one/- Complex.volume_sum_rpow_lt: same as above but for complex finite-dimensional vector space.
- EuclideanSpace.volume_ball/- EuclideanSpace.volume_closedBall: volume of open and closed balls in a finite-dimensional Euclidean space.
- InnerProductSpace.volume_ball/- InnerProductSpace.volume_closedBall: volume of open and closed balls in a finite-dimensional real inner product space.
- Complex.volume_ball/- Complex.volume_closedBall: volume of open and closed balls in- ℂ.