Gaussian integral #
We prove various versions of the formula for the Gaussian integral:
integral_gaussian
: for realb
we have∫ x:ℝ, exp (-b * x^2) = √(π / b)
.integral_gaussian_complex
: for complexb
with0 < re b
we have∫ x:ℝ, exp (-b * x^2) = (π / b) ^ (1 / 2)
.integral_gaussian_Ioi
andintegral_gaussian_complex_Ioi
: variants for integrals overIoi 0
.Complex.Gamma_one_half_eq
: the formulaΓ (1 / 2) = √π
.
theorem
integrable_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
integrable_mul_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => ↑x * Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
continuousAt_gaussian_integral
(b : ℂ)
(hb : 0 < b.re)
:
ContinuousAt (fun (c : ℂ) => ∫ (x : ℝ), Complex.exp (-c * ↑x ^ 2)) b
The special-value formula Γ(1/2) = √π
, which is equivalent to the Gaussian integral.
The special-value formula Γ(1/2) = √π
, which is equivalent to the Gaussian integral.
The special-value formula Γ(k + 1/2) = (2 * k - 1)‼ * √π / (2 ^ k))
for half-integer
values of the gamma function in terms of Nat.doubleFactorial
.