Gaussian integral #
We prove various versions of the formula for the Gaussian integral:
integral_gaussian
: for realb
we have∫ x:ℝ, exp (-b * x^2) = √(π / b)
.integral_gaussian_complex
: for complexb
with0 < re b
we have∫ x:ℝ, exp (-b * x^2) = (π / b) ^ (1 / 2)
.integral_gaussian_Ioi
andintegral_gaussian_complex_Ioi
: variants for integrals overIoi 0
.Complex.Gamma_one_half_eq
: the formulaΓ (1 / 2) = √π
.
theorem
integrableOn_rpow_mul_exp_neg_rpow
{p s : ℝ}
(hs : -1 < s)
(hp : 1 ≤ p)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => x ^ s * Real.exp (-x ^ p)) (Set.Ioi 0) MeasureTheory.volume
theorem
integrable_rpow_mul_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b)
{s : ℝ}
(hs : -1 < s)
:
MeasureTheory.Integrable (fun (x : ℝ) => x ^ s * Real.exp (-b * x ^ 2)) MeasureTheory.volume
theorem
integrable_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b)
:
MeasureTheory.Integrable (fun (x : ℝ) => Real.exp (-b * x ^ 2)) MeasureTheory.volume
theorem
integrableOn_Ioi_exp_neg_mul_sq_iff
{b : ℝ}
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Real.exp (-b * x ^ 2)) (Set.Ioi 0) MeasureTheory.volume ↔ 0 < b
theorem
integrable_exp_neg_mul_sq_iff
{b : ℝ}
:
MeasureTheory.Integrable (fun (x : ℝ) => Real.exp (-b * x ^ 2)) MeasureTheory.volume ↔ 0 < b
theorem
integrable_mul_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b)
:
MeasureTheory.Integrable (fun (x : ℝ) => x * Real.exp (-b * x ^ 2)) MeasureTheory.volume
theorem
integrable_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
integrable_mul_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => ↑x * Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
continuousAt_gaussian_integral
(b : ℂ)
(hb : 0 < b.re)
:
ContinuousAt (fun (c : ℂ) => ∫ (x : ℝ), Complex.exp (-c * ↑x ^ 2)) b