Documentation

Mathlib.Order.Cover

The covering relation #

This file defines the covering relation in an order. b is said to cover a if a < b and there is no element in between. We say that b weakly covers a if a ≤ b≤ b and there is no element between a and b. In a partial order this is equivalent to a ⋖ b ∨ a = b⋖ b ∨ a = b∨ a = b, in a preorder this is equivalent to a ⋖ b ∨ (a ≤ b ∧ b ≤ a)⋖ b ∨ (a ≤ b ∧ b ≤ a)∨ (a ≤ b ∧ b ≤ a)≤ b ∧ b ≤ a)∧ b ≤ a)≤ a)

Notation #

def Wcovby {α : Type u_1} [inst : Preorder α] (a : α) (b : α) :

Wcovby a b means that a = b or b covers a. This means that a ≤ b≤ b and there is no element in between.

Equations
theorem Wcovby.le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a ⩿ b) :
a b
theorem Wcovby.refl {α : Type u_1} [inst : Preorder α] (a : α) :
a ⩿ a
theorem Wcovby.rfl {α : Type u_1} [inst : Preorder α] {a : α} :
a ⩿ a
theorem Eq.wcovby {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a = b) :
a ⩿ b
theorem wcovby_of_le_of_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h1 : a b) (h2 : b a) :
a ⩿ b
theorem LE.le.wcovby_of_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h1 : a b) (h2 : b a) :
a ⩿ b

Alias of wcovby_of_le_of_le.

theorem AntisymmRel.wcovby {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : AntisymmRel (fun x x_1 => x x_1) a b) :
a ⩿ b
theorem Wcovby.wcovby_iff_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (hab : a ⩿ b) :
b ⩿ a b a
theorem wcovby_of_eq_or_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (hab : a b) (h : ∀ (c : α), a cc bc = a c = b) :
a ⩿ b
theorem AntisymmRel.trans_wcovby {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) (hbc : b ⩿ c) :
a ⩿ c
theorem wcovby_congr_left {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) :
a ⩿ c b ⩿ c
theorem Wcovby.trans_antisymm_rel {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : a ⩿ b) (hbc : AntisymmRel (fun x x_1 => x x_1) b c) :
a ⩿ c
theorem wcovby_congr_right {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) :
c ⩿ a c ⩿ b
theorem not_wcovby_iff {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
¬a ⩿ b c, a < c c < b

If a ≤ b≤ b, then b does not cover a iff there's an element in between.

instance Wcovby.isRefl {α : Type u_1} [inst : Preorder α] :
IsRefl α fun x x_1 => x ⩿ x_1
Equations
theorem Wcovby.Ioo_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a ⩿ b) :
theorem wcovby_iff_Ioo_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a ⩿ b a b Set.Ioo a b =
theorem Wcovby.of_image {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (h : f.toEmbedding a ⩿ f.toEmbedding b) :
a ⩿ b
theorem Wcovby.image {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (hab : a ⩿ b) (h : Set.OrdConnected (Set.range f.toEmbedding)) :
f.toEmbedding a ⩿ f.toEmbedding b
theorem Set.OrdConnected.apply_wcovby_apply_iff {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (h : Set.OrdConnected (Set.range f.toEmbedding)) :
f.toEmbedding a ⩿ f.toEmbedding b a ⩿ b
@[simp]
theorem apply_wcovby_apply_iff {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} {E : Type u_1} [inst : OrderIsoClass E α β] (e : E) :
e a ⩿ e b a ⩿ b
@[simp]
theorem toDual_wcovby_toDual_iff {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
OrderDual.toDual b ⩿ OrderDual.toDual a a ⩿ b
@[simp]
theorem ofDual_wcovby_ofDual_iff {α : Type u_1} [inst : Preorder α] {a : αᵒᵈ} {b : αᵒᵈ} :
OrderDual.ofDual a ⩿ OrderDual.ofDual b b ⩿ a
theorem Wcovby.toDual {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a ⩿ bOrderDual.toDual b ⩿ OrderDual.toDual a

Alias of the reverse direction of toDual_wcovby_toDual_iff.

theorem Wcovby.ofDual {α : Type u_1} [inst : Preorder α] {a : αᵒᵈ} {b : αᵒᵈ} :
b ⩿ aOrderDual.ofDual a ⩿ OrderDual.ofDual b

Alias of the reverse direction of ofDual_wcovby_ofDual_iff.

theorem Wcovby.eq_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} {c : α} (h : a ⩿ b) (h2 : a c) (h3 : c b) :
c = a c = b
theorem wcovby_iff_le_and_eq_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a ⩿ b a b ∀ (c : α), a cc bc = a c = b

An iff version of Wcovby.eq_or_eq and wcovby_of_eq_or_eq.

theorem Wcovby.le_and_le_iff {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} {c : α} (h : a ⩿ b) :
a c c b c = a c = b
theorem Wcovby.Icc_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a ⩿ b) :
Set.Icc a b = {a, b}
theorem Wcovby.Ico_subset {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a ⩿ b) :
Set.Ico a b {a}
theorem Wcovby.Ioc_subset {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a ⩿ b) :
Set.Ioc a b {b}
theorem Wcovby.sup_eq {α : Type u_1} [inst : SemilatticeSup α] {a : α} {b : α} {c : α} (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a b) :
a b = c
theorem Wcovby.inf_eq {α : Type u_1} [inst : SemilatticeInf α] {a : α} {b : α} {c : α} (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a b) :
a b = c
def Covby {α : Type u_1} [inst : LT α] (a : α) (b : α) :

Covby a b means that b covers a: a < b and there is no element in between.

Equations
theorem Covby.lt {α : Type u_1} [inst : LT α] {a : α} {b : α} (h : a b) :
a < b
theorem not_covby_iff {α : Type u_1} [inst : LT α] {a : α} {b : α} (h : a < b) :
¬a b c, a < c c < b

If a < b, then b does not cover a iff there's an element in between.

theorem exists_lt_lt_of_not_covby {α : Type u_1} [inst : LT α] {a : α} {b : α} (h : a < b) :
¬a bc, a < c c < b

Alias of the forward direction of not_covby_iff.

theorem LT.lt.exists_lt_lt {α : Type u_1} [inst : LT α] {a : α} {b : α} (h : a < b) :
¬a bc, a < c c < b

Alias of exists_lt_lt_of_not_covby.

theorem not_covby {α : Type u_1} [inst : LT α] {a : α} {b : α} [inst : DenselyOrdered α] :
¬a b

In a dense order, nothing covers anything.

theorem densely_ordered_iff_forall_not_covby {α : Type u_1} [inst : LT α] :
DenselyOrdered α ∀ (a b : α), ¬a b
@[simp]
theorem toDual_covby_toDual_iff {α : Type u_1} [inst : LT α] {a : α} {b : α} :
OrderDual.toDual b OrderDual.toDual a a b
@[simp]
theorem ofDual_covby_ofDual_iff {α : Type u_1} [inst : LT α] {a : αᵒᵈ} {b : αᵒᵈ} :
OrderDual.ofDual a OrderDual.ofDual b b a
theorem Covby.toDual {α : Type u_1} [inst : LT α] {a : α} {b : α} :
a bOrderDual.toDual b OrderDual.toDual a

Alias of the reverse direction of toDual_covby_toDual_iff.

theorem Covby.ofDual {α : Type u_1} [inst : LT α] {a : αᵒᵈ} {b : αᵒᵈ} :
b aOrderDual.ofDual a OrderDual.ofDual b

Alias of the reverse direction of ofDual_covby_ofDual_iff.

theorem Covby.le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
a b
theorem Covby.ne {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
a b
theorem Covby.ne' {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
b a
theorem Covby.wcovby {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
a ⩿ b
theorem Wcovby.covby_of_not_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a ⩿ b) (h2 : ¬b a) :
a b
theorem Wcovby.covby_of_lt {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a ⩿ b) (h2 : a < b) :
a b
theorem not_covby_of_lt_of_lt {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (h₁ : a < b) (h₂ : b < c) :
¬a c
theorem covby_iff_wcovby_and_lt {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a b a ⩿ b a < b
theorem covby_iff_wcovby_and_not_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a b a ⩿ b ¬b a
theorem wcovby_iff_covby_or_le_and_le {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a ⩿ b a b a b b a
theorem AntisymmRel.trans_covby {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) (hbc : b c) :
a c
theorem covby_congr_left {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) :
a c b c
theorem Covby.trans_antisymmRel {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : a b) (hbc : AntisymmRel (fun x x_1 => x x_1) b c) :
a c
theorem covby_congr_right {α : Type u_1} [inst : Preorder α] {a : α} {b : α} {c : α} (hab : AntisymmRel (fun x x_1 => x x_1) a b) :
c a c b
instance instIsNonstrictStrictOrderWcovbyCovbyToLT {α : Type u_1} [inst : Preorder α] :
IsNonstrictStrictOrder α (fun x x_1 => x ⩿ x_1) fun x x_1 => x x_1
Equations
  • instIsNonstrictStrictOrderWcovbyCovbyToLT = { right_iff_left_not_left := (_ : ∀ (x x_1 : α), x x_1 x ⩿ x_1 ¬x_1 ⩿ x) }
instance Covby.isIrrefl {α : Type u_1} [inst : Preorder α] :
IsIrrefl α fun x x_1 => x x_1
Equations
theorem Covby.Ioo_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (h : a b) :
theorem covby_iff_Ioo_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} :
a b a < b Set.Ioo a b =
theorem Covby.of_image {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (h : f.toEmbedding a f.toEmbedding b) :
a b
theorem Covby.image {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (hab : a b) (h : Set.OrdConnected (Set.range f.toEmbedding)) :
f.toEmbedding a f.toEmbedding b
theorem Set.OrdConnected.apply_covby_apply_iff {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} (f : α ↪o β) (h : Set.OrdConnected (Set.range f.toEmbedding)) :
f.toEmbedding a f.toEmbedding b a b
@[simp]
theorem apply_covby_apply_iff {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst : Preorder β] {a : α} {b : α} {E : Type u_1} [inst : OrderIsoClass E α β] (e : E) :
e a e b a b
theorem covby_of_eq_or_eq {α : Type u_1} [inst : Preorder α] {a : α} {b : α} (hab : a < b) (h : ∀ (c : α), a cc bc = a c = b) :
a b
theorem Wcovby.covby_of_ne {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a ⩿ b) (h2 : a b) :
a b
theorem covby_iff_wcovby_and_ne {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a b a ⩿ b a b
theorem wcovby_iff_covby_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a ⩿ b a b a = b
theorem wcovby_iff_eq_or_covby {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a ⩿ b a = b a b
theorem Wcovby.covby_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a ⩿ ba b a = b

Alias of the forward direction of wcovby_iff_covby_or_eq.

theorem Wcovby.eq_or_covby {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a ⩿ ba = b a b

Alias of the forward direction of wcovby_iff_eq_or_covby.

theorem Covby.eq_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} {c : α} (h : a b) (h2 : a c) (h3 : c b) :
c = a c = b
theorem covby_iff_lt_and_eq_or_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} :
a b a < b ∀ (c : α), a cc bc = a c = b

An iff version of Covby.eq_or_eq and covby_of_eq_or_eq.

theorem Covby.Ico_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a b) :
Set.Ico a b = {a}
theorem Covby.Ioc_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a b) :
Set.Ioc a b = {b}
theorem Covby.Icc_eq {α : Type u_1} [inst : PartialOrder α] {a : α} {b : α} (h : a b) :
Set.Icc a b = {a, b}
theorem Covby.Ioi_eq {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} (h : a b) :
theorem Covby.Iio_eq {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} (h : a b) :
theorem Wcovby.le_of_lt {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (hab : a ⩿ b) (hcb : c < b) :
c a
theorem Wcovby.ge_of_gt {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (hab : a ⩿ b) (hac : a < c) :
b c
theorem Covby.le_of_lt {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (hab : a b) :
c < bc a
theorem Covby.ge_of_gt {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (hab : a b) :
a < cb c
theorem Covby.unique_left {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (ha : a c) (hb : b c) :
a = b
theorem Covby.unique_right {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} (hb : a b) (hc : a c) :
b = c
theorem Covby.eq_of_between {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} {c : α} {x : α} (hab : a b) (hbc : b c) (hax : a < x) (hxc : x < c) :
x = b

If a, b, c are consecutive and a < x < c then x = b.

theorem LT.lt.exists_disjoint_Iio_Ioi {α : Type u_1} [inst : LinearOrder α] {a : α} {b : α} (h : a < b) :
a', a' > a b', b' < b ∀ (x : α), x < a'∀ (y : α), y > b'x < y

If a < b then there exist a' > a and b' < b such that Set.Iio a' is strictly to the left of Set.Ioi b'.

theorem Set.wcovby_insert {α : Type u_1} (x : α) (s : Set α) :
s ⩿ insert x s
theorem Set.covby_insert {α : Type u_1} {x : α} {s : Set α} (hx : ¬x s) :
s insert x s
@[simp]
theorem Prod.swap_wcovby_swap {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} :
@[simp]
theorem Prod.swap_covby_swap {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} :
theorem Prod.fst_eq_or_snd_eq_of_wcovby {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} :
x ⩿ yx.fst = y.fst x.snd = y.snd
theorem Wcovby.fst {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} (h : x ⩿ y) :
x.fst ⩿ y.fst
theorem Wcovby.snd {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} (h : x ⩿ y) :
x.snd ⩿ y.snd
theorem Prod.mk_wcovby_mk_iff_left {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a₁ : α} {a₂ : α} {b : β} :
(a₁, b) ⩿ (a₂, b) a₁ ⩿ a₂
theorem Prod.mk_wcovby_mk_iff_right {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a : α} {b₁ : β} {b₂ : β} :
(a, b₁) ⩿ (a, b₂) b₁ ⩿ b₂
theorem Prod.mk_covby_mk_iff_left {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a₁ : α} {a₂ : α} {b : β} :
(a₁, b) (a₂, b) a₁ a₂
theorem Prod.mk_covby_mk_iff_right {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a : α} {b₁ : β} {b₂ : β} :
(a, b₁) (a, b₂) b₁ b₂
theorem Prod.mk_wcovby_mk_iff {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β} :
(a₁, b₁) ⩿ (a₂, b₂) a₁ ⩿ a₂ b₁ = b₂ b₁ ⩿ b₂ a₁ = a₂
theorem Prod.mk_covby_mk_iff {α : Type u_2} {β : Type u_1} [inst : PartialOrder α] [inst : PartialOrder β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β} :
(a₁, b₁) (a₂, b₂) a₁ a₂ b₁ = b₂ b₁ b₂ a₁ = a₂
theorem Prod.wcovby_iff {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} :
x ⩿ y x.fst ⩿ y.fst x.snd = y.snd x.snd ⩿ y.snd x.fst = y.fst
theorem Prod.covby_iff {α : Type u_1} {β : Type u_2} [inst : PartialOrder α] [inst : PartialOrder β] {x : α × β} {y : α × β} :
x y x.fst y.fst x.snd = y.snd x.snd y.snd x.fst = y.fst