Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Disjoint
Search
return to top
source
Imports
Init
Mathlib.Order.Filter.AtTopBot.Defs
Mathlib.Order.Interval.Set.Disjoint
Imported by
Filter
.
disjoint_atBot_principal_Ioi
Filter
.
disjoint_atTop_principal_Iio
Filter
.
disjoint_atTop_principal_Iic
Filter
.
disjoint_atBot_principal_Ici
Filter
.
disjoint_pure_atTop
Filter
.
disjoint_pure_atBot
Filter
.
disjoint_atBot_atTop
Filter
.
disjoint_atTop_atBot
Disjointness of
Filter.atTop
and
Filter.atBot
#
source
theorem
Filter
.
disjoint_atBot_principal_Ioi
{α :
Type
u_3}
[
Preorder
α
]
(x :
α
)
:
Disjoint
atBot
(
principal
(
Set.Ioi
x
)
)
source
theorem
Filter
.
disjoint_atTop_principal_Iio
{α :
Type
u_3}
[
Preorder
α
]
(x :
α
)
:
Disjoint
atTop
(
principal
(
Set.Iio
x
)
)
source
theorem
Filter
.
disjoint_atTop_principal_Iic
{α :
Type
u_3}
[
Preorder
α
]
[
NoMaxOrder
α
]
(x :
α
)
:
Disjoint
atTop
(
principal
(
Set.Iic
x
)
)
source
theorem
Filter
.
disjoint_atBot_principal_Ici
{α :
Type
u_3}
[
Preorder
α
]
[
NoMinOrder
α
]
(x :
α
)
:
Disjoint
atBot
(
principal
(
Set.Ici
x
)
)
source
theorem
Filter
.
disjoint_pure_atTop
{α :
Type
u_3}
[
Preorder
α
]
[
NoMaxOrder
α
]
(x :
α
)
:
Disjoint
(
pure
x
)
atTop
source
theorem
Filter
.
disjoint_pure_atBot
{α :
Type
u_3}
[
Preorder
α
]
[
NoMinOrder
α
]
(x :
α
)
:
Disjoint
(
pure
x
)
atBot
source
theorem
Filter
.
disjoint_atBot_atTop
{α :
Type
u_3}
[
PartialOrder
α
]
[
Nontrivial
α
]
:
Disjoint
atBot
atTop
source
theorem
Filter
.
disjoint_atTop_atBot
{α :
Type
u_3}
[
PartialOrder
α
]
[
Nontrivial
α
]
:
Disjoint
atTop
atBot