Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Map
Search
return to top
source
Imports
Init
Mathlib.Order.Filter.Map
Mathlib.Order.Filter.Tendsto
Mathlib.Order.Filter.AtTopBot.Defs
Mathlib.Order.Interval.Set.OrderIso
Imported by
OrderIso
.
comap_atTop
OrderIso
.
comap_atBot
OrderIso
.
map_atTop
OrderIso
.
map_atBot
OrderIso
.
tendsto_atTop
OrderIso
.
tendsto_atBot
OrderIso
.
tendsto_atTop_iff
OrderIso
.
tendsto_atBot_iff
Map and comap of
Filter.atTop
and
Filter.atBot
#
source
@[simp]
theorem
OrderIso
.
comap_atTop
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.comap
(⇑
e
)
Filter.atTop
=
Filter.atTop
source
@[simp]
theorem
OrderIso
.
comap_atBot
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.comap
(⇑
e
)
Filter.atBot
=
Filter.atBot
source
@[simp]
theorem
OrderIso
.
map_atTop
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.map
(⇑
e
)
Filter.atTop
=
Filter.atTop
source
@[simp]
theorem
OrderIso
.
map_atBot
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.map
(⇑
e
)
Filter.atBot
=
Filter.atBot
source
theorem
OrderIso
.
tendsto_atTop
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.Tendsto
(⇑
e
)
Filter.atTop
Filter.atTop
source
theorem
OrderIso
.
tendsto_atBot
{α :
Type
u_3}
{β :
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
(e :
α
≃o
β
)
:
Filter.Tendsto
(⇑
e
)
Filter.atBot
Filter.atBot
source
@[simp]
theorem
OrderIso
.
tendsto_atTop_iff
{α :
Type
u_3}
{β :
Type
u_4}
{γ :
Type
u_5}
[
Preorder
α
]
[
Preorder
β
]
{l :
Filter
γ
}
{f :
γ
→
α
}
(e :
α
≃o
β
)
:
Filter.Tendsto
(fun (
x
:
γ
) =>
e
(
f
x
)
)
l
Filter.atTop
↔
Filter.Tendsto
f
l
Filter.atTop
source
@[simp]
theorem
OrderIso
.
tendsto_atBot_iff
{α :
Type
u_3}
{β :
Type
u_4}
{γ :
Type
u_5}
[
Preorder
α
]
[
Preorder
β
]
{l :
Filter
γ
}
{f :
γ
→
α
}
(e :
α
≃o
β
)
:
Filter.Tendsto
(fun (
x
:
γ
) =>
e
(
f
x
)
)
l
Filter.atBot
↔
Filter.Tendsto
f
l
Filter.atBot