Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Monoid
Search
return to top
source
Imports
Init
Mathlib.Order.Filter.AtTopBot
Mathlib.Algebra.Order.Monoid.OrderDual
Mathlib.Algebra.Order.Monoid.Unbundled.Pow
Imported by
Filter
.
tendsto_atTop_add_nonneg_left'
Filter
.
tendsto_atBot_add_nonpos_left'
Filter
.
tendsto_atTop_add_nonneg_left
Filter
.
tendsto_atBot_add_nonpos_left
Filter
.
tendsto_atTop_add_nonneg_right'
Filter
.
tendsto_atBot_add_nonpos_right'
Filter
.
tendsto_atTop_add_nonneg_right
Filter
.
tendsto_atBot_add_nonpos_right
Filter
.
tendsto_atTop_add
Filter
.
tendsto_atBot_add
Filter
.
Tendsto
.
nsmul_atTop
Filter
.
Tendsto
.
nsmul_atBot
Filter
.
tendsto_atTop_of_add_const_left
Filter
.
tendsto_atBot_of_add_const_left
Filter
.
tendsto_atTop_of_add_const_right
Filter
.
tendsto_atBot_of_add_const_right
Filter
.
tendsto_atTop_of_add_bdd_above_left'
Filter
.
tendsto_atBot_of_add_bdd_below_left'
Filter
.
tendsto_atTop_of_add_bdd_above_left
Filter
.
tendsto_atBot_of_add_bdd_below_left
Filter
.
tendsto_atTop_of_add_bdd_above_right'
Filter
.
tendsto_atBot_of_add_bdd_below_right'
Filter
.
tendsto_atTop_of_add_bdd_above_right
Filter
.
tendsto_atBot_of_add_bdd_below_right
Convergence to ±infinity in ordered commutative monoids
#
source
theorem
Filter
.
tendsto_atTop_add_nonneg_left'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
∀ᶠ
(
x
:
α
)
in
l
,
0
≤
f
x
)
(hg :
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_nonpos_left'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
∀ᶠ
(
x
:
α
)
in
l
,
f
x
≤
0
)
(hg :
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_nonneg_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
∀ (
x
:
α
),
0
≤
f
x
)
(hg :
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_nonpos_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
∀ (
x
:
α
),
f
x
≤
0
)
(hg :
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_nonneg_right'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atTop
)
(hg :
∀ᶠ
(
x
:
α
)
in
l
,
0
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_nonpos_right'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atBot
)
(hg :
∀ᶠ
(
x
:
α
)
in
l
,
g
x
≤
0
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add_nonneg_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atTop
)
(hg :
∀ (
x
:
α
),
0
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add_nonpos_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atBot
)
(hg :
∀ (
x
:
α
),
g
x
≤
0
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_add
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atTop
)
(hg :
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_add
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(hf :
Tendsto
f
l
atBot
)
(hg :
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
Tendsto
.
nsmul_atTop
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(hf :
Tendsto
f
l
atTop
)
{n :
ℕ
}
(hn :
0
<
n
)
:
Tendsto
(fun (
x
:
α
) =>
n
•
f
x
)
l
atTop
source
theorem
Filter
.
Tendsto
.
nsmul_atBot
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(hf :
Tendsto
f
l
atBot
)
{n :
ℕ
}
(hn :
0
<
n
)
:
Tendsto
(fun (
x
:
α
) =>
n
•
f
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_const_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atTop
)
:
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_const_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atBot
)
:
Tendsto
f
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_const_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atTop
)
:
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_const_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f :
α
→
β
}
(C :
β
)
(hf :
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atBot
)
:
Tendsto
f
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_bdd_above_left'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ᶠ
(
x
:
α
)
in
l
,
f
x
≤
C
)
(h :
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
)
:
Tendsto
g
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_bdd_below_left'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
f
x
)
(h :
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
)
:
Tendsto
g
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_bdd_above_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ (
x
:
α
),
f
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
→
Tendsto
g
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_bdd_below_left
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ (
x
:
α
),
C
≤
f
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
→
Tendsto
g
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_bdd_above_right'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ᶠ
(
x
:
α
)
in
l
,
g
x
≤
C
)
(h :
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
)
:
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_bdd_below_right'
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
g
x
)
(h :
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
)
:
Tendsto
f
l
atBot
source
theorem
Filter
.
tendsto_atTop_of_add_bdd_above_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ (
x
:
α
),
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
→
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_atBot_of_add_bdd_below_right
{α :
Type
u_1}
{β :
Type
u_2}
[
OrderedCancelAddCommMonoid
β
]
{l :
Filter
α
}
{f g :
α
→
β
}
(C :
β
)
(hC :
∀ (
x
:
α
),
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
→
Tendsto
f
l
atBot