Maximal length of chains #
This file contains lemmas to work with the maximal lengths of chains of arbitrary relations. See
Order.height for a definition specialized to finding the height of an element in a preorder.
Main definition #
Set.chainHeight: The maximal length of a chain in a setswith relationr.
Main results #
Set.exists_isChain_of_le_chainHeight: For eachn : ℕsuch thatn ≤ s.chainHeight, there exists a subsettof lengthnsuch thatIsChain r t.Set.chainHeight_mono: Ifs ⊆ tthens.chainHeight ≤ t.chainHeight.Set.chainHeight_eq_of_relEmbedding: Iffis an relation embedding, then(f '' s).chainHeight = s.chainHeight.
theorem
Set.chainHeight_ne_top_of_finite
{α : Type u_1}
(s : Set α)
(r : α → α → Prop)
(h : s.Finite)
:
theorem
Set.exists_eq_chainHeight_of_chainHeight_ne_top
{α : Type u_1}
(s : Set α)
(r : α → α → Prop)
(h : s.chainHeight r ≠ ⊤)
:
∃ t ⊆ s, t.encard = s.chainHeight r ∧ IsChain r t
theorem
Set.encard_eq_chainHeight_of_isChain
{α : Type u_1}
{r : α → α → Prop}
(s : Set α)
(hc : IsChain r s)
:
theorem
Set.finite_of_chainHeight_ne_top
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hc : IsChain r s)
(h : s.chainHeight r ≠ ⊤)
:
s.Finite
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]