Lattice Congruences #
Main definitions #
LatticeCon
: An equivalence relation is a congruence relation for the lattice structure if it is compatible with theinf
andsup
operations.LatticeCon.ker
: The kernel of a lattice homomorphism as a lattice congruence.
Main statements #
LatticeCon.mk'
: Alternative conditions for a relation to be a lattice congruence.
References #
Tags #
Lattice, Congruence
An equivalence relation is a congruence relation for the latice structure if it is compatible
with the inf
and sup
operations.
- iseqv : Equivalence ⇑self.toSetoid
Instances For
@[simp]
def
LatticeCon.mk'
{α : Type u_2}
[Lattice α]
(r : α → α → Prop)
[h₁ : IsRefl α r]
(h₂ : ∀ ⦃x y : α⦄, r x y ↔ r (x ⊓ y) (x ⊔ y))
(h₃ : ∀ ⦃x y z : α⦄, x ≤ y → y ≤ z → r x y → r y z → r x z)
(h₄ : ∀ ⦃x y t : α⦄, x ≤ y → r x y → r (x ⊓ t) (y ⊓ t) ∧ r (x ⊔ t) (y ⊔ t))
:
Alternative conditions for a lattice congruence.
Equations
- LatticeCon.mk' r h₂ h₃ h₄ = { r := r, iseqv := ⋯, inf := ⋯, sup := ⋯ }
Instances For
def
LatticeCon.ker
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[FunLike F α β]
[Lattice α]
[Lattice β]
[LatticeHomClass F α β]
(f : F)
:
The kernel of a lattice homomorphism as a lattice congruence.
Equations
- LatticeCon.ker f = { toSetoid := Setoid.ker ⇑f, inf := ⋯, sup := ⋯ }
Instances For
@[simp]
theorem
LatticeCon.ker_r
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[FunLike F α β]
[Lattice α]
[Lattice β]
[LatticeHomClass F α β]
(f : F)
(a✝ a✝¹ : α)
: