Documentation

Mathlib.Order.Lattice.Congruence

Lattice Congruences #

Main definitions #

Main statements #

References #

Tags #

Lattice, Congruence

structure LatticeCon (α : Type u_2) [Lattice α] extends Setoid α :
Type u_2

An equivalence relation is a congruence relation for the latice structure if it is compatible with the inf and sup operations.

Instances For
    @[simp]
    theorem LatticeCon.r_inf_sup_iff {α : Type u_2} [Lattice α] (c : LatticeCon α) {x y : α} :
    c.toSetoid (xy) (xy) c.toSetoid x y
    def LatticeCon.mk' {α : Type u_2} [Lattice α] (r : ααProp) [h₁ : IsRefl α r] (h₂ : ∀ ⦃x y : α⦄, r x y r (xy) (xy)) (h₃ : ∀ ⦃x y z : α⦄, x yy zr x yr y zr x z) (h₄ : ∀ ⦃x y t : α⦄, x yr x yr (xt) (yt) r (xt) (yt)) :

    Alternative conditions for a lattice congruence.

    Equations
    Instances For
      def LatticeCon.ker {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Lattice α] [Lattice β] [LatticeHomClass F α β] (f : F) :

      The kernel of a lattice homomorphism as a lattice congruence.

      Equations
      Instances For
        @[simp]
        theorem LatticeCon.ker_r {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Lattice α] [Lattice β] [LatticeHomClass F α β] (f : F) (a✝ a✝¹ : α) :
        (ker f).toSetoid a✝ a✝¹ = Function.onFun (fun (x1 x2 : β) => x1 = x2) (⇑f) a✝ a✝¹