Documentation

Mathlib.Order.LiminfLimsup

liminfs and limsups of functions and filters #

Defines the liminf/limsup of a function taking values in a conditionally complete lattice, with respect to an arbitrary filter.

We define limsSup f (limsInf f) where f is a filter taking values in a conditionally complete lattice. limsSup f is the smallest element a such that, eventually, u ≤ a (and vice versa for limsInf f). To work with the Limsup along a function u use limsSup (map u f).

Usually, one defines the Limsup as inf (sup s) where the Inf is taken over all sets in the filter. For instance, in ℕ along a function u, this is inf_n (sup_{k ≥ n} u k) (and the latter quantity decreases with n, so this is in fact a limit.). There is however a difficulty: it is well possible that u is not bounded on the whole space, only eventually (think of limsup (fun x ↦ 1/x) on ℝ. Then there is no guarantee that the quantity above really decreases (the value of the sup beforehand is not really well defined, as one can not use ∞), so that the Inf could be anything. So one can not use this inf sup ... definition in conditionally complete lattices, and one has to use a less tractable definition.

In conditionally complete lattices, the definition is only useful for filters which are eventually bounded above (otherwise, the Limsup would morally be +∞, which does not belong to the space) and which are frequently bounded below (otherwise, the Limsup would morally be -∞, which is not in the space either). We start with definitions of these concepts for arbitrary filters, before turning to the definitions of Limsup and Liminf.

In complete lattices, however, it coincides with the Inf Sup definition.

theorem Filter.isBounded_iff {α : Type u_1} {r : ααProp} {f : Filter α} :
IsBounded r f sf.sets, ∃ (b : α), s {x : α | r x b}

f is eventually bounded if and only if, there exists an admissible set on which it is bounded.

theorem Filter.isBoundedUnder_of {α : Type u_1} {β : Type u_2} {r : ααProp} {f : Filter β} {u : βα} :
(∃ (b : α), ∀ (x : β), r (u x) b)IsBoundedUnder r f u

A bounded function u is in particular eventually bounded.

theorem Filter.isBounded_bot {α : Type u_1} {r : ααProp} :
theorem Filter.isBounded_top {α : Type u_1} {r : ααProp} :
IsBounded r ∃ (t : α), ∀ (x : α), r x t
theorem Filter.isBounded_principal {α : Type u_1} {r : ααProp} (s : Set α) :
IsBounded r (principal s) ∃ (t : α), xs, r x t
theorem Filter.isBounded_sup {α : Type u_1} {r : ααProp} {f g : Filter α} [IsTrans α r] [IsDirected α r] :
IsBounded r fIsBounded r gIsBounded r (f g)
theorem Filter.IsBounded.mono {α : Type u_1} {r : ααProp} {f g : Filter α} (h : f g) :
IsBounded r gIsBounded r f
theorem Filter.IsBoundedUnder.mono {α : Type u_1} {β : Type u_2} {r : ααProp} {f g : Filter β} {u : βα} (h : f g) :
theorem Filter.IsBoundedUnder.mono_le {α : Type u_1} {β : Type u_2} [Preorder β] {l : Filter α} {u v : αβ} (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l u) (hv : v ≤ᶠ[l] u) :
IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l v
theorem Filter.IsBoundedUnder.mono_ge {α : Type u_1} {β : Type u_2} [Preorder β] {l : Filter α} {u v : αβ} (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l u) (hv : u ≤ᶠ[l] v) :
IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l v
theorem Filter.isBoundedUnder_const {α : Type u_1} {β : Type u_2} {r : ααProp} [IsRefl α r] {l : Filter β} {a : α} :
IsBoundedUnder r l fun (x : β) => a
theorem Filter.IsBounded.isBoundedUnder {α : Type u_1} {β : Type u_2} {r : ααProp} {f : Filter α} {q : ββProp} {u : αβ} (hu : ∀ (a₀ a₁ : α), r a₀ a₁q (u a₀) (u a₁)) :
theorem Filter.IsBoundedUnder.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {r : ααProp} {l : Filter γ} {q : ββProp} {u : γα} {v : αβ} (hv : ∀ (a₀ a₁ : α), r a₀ a₁q (v a₀) (v a₁)) :
IsBoundedUnder r l uIsBoundedUnder q l (v u)
theorem Filter.IsBoundedUnder.eventually_le {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} (h : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u) :
∃ (a : α), ∀ᶠ (x : β) in f, u x a
theorem Filter.IsBoundedUnder.eventually_ge {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} (h : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u) :
∃ (a : α), ∀ᶠ (x : β) in f, a u x
theorem Filter.isBoundedUnder_of_eventually_le {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} {a : α} (h : ∀ᶠ (x : β) in f, u x a) :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.isBoundedUnder_of_eventually_ge {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} {a : α} (h : ∀ᶠ (x : β) in f, a u x) :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.isBoundedUnder_iff_eventually_bddAbove {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u ∃ (s : Set β), BddAbove (u '' s) ∀ᶠ (x : β) in f, x s
theorem Filter.isBoundedUnder_iff_eventually_bddBelow {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u ∃ (s : Set β), BddBelow (u '' s) ∀ᶠ (x : β) in f, x s
theorem BddAbove.isBoundedUnder {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} {s : Set β} (hs : s f) (hu : BddAbove (u '' s)) :
Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem BddAbove.isBoundedUnder_of_range {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} (hu : BddAbove (Set.range u)) :
Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u

A bounded above function u is in particular eventually bounded above.

theorem BddBelow.isBoundedUnder {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} {s : Set β} (hs : s f) (hu : BddBelow (u '' s)) :
Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem BddBelow.isBoundedUnder_of_range {α : Type u_1} {β : Type u_2} [Preorder α] {f : Filter β} {u : βα} (hu : BddBelow (Set.range u)) :
Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u

A bounded below function u is in particular eventually bounded below.

theorem Filter.IsBoundedUnder.le_of_finite {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Finite β] {f : Filter β} {u : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.IsBoundedUnder.ge_of_finite {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Finite β] {f : Filter β} {u : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Monotone.isBoundedUnder_le_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] {l : Filter γ} {u : γα} {v : αβ} (hv : Monotone v) (hl : Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l (v u)
theorem Monotone.isBoundedUnder_ge_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] {l : Filter γ} {u : γα} {v : αβ} (hv : Monotone v) (hl : Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l (v u)
theorem Antitone.isBoundedUnder_le_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] {l : Filter γ} {u : γα} {v : αβ} (hv : Antitone v) (hl : Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l (v u)
theorem Antitone.isBoundedUnder_ge_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] {l : Filter γ} {u : γα} {v : αβ} (hv : Antitone v) (hl : Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l (v u)
theorem Filter.not_isBoundedUnder_of_tendsto_atTop {α : Type u_1} {β : Type u_2} [Preorder β] [NoMaxOrder β] {f : αβ} {l : Filter α} [l.NeBot] (hf : Tendsto f l atTop) :
¬IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
theorem Filter.not_isBoundedUnder_of_tendsto_atBot {α : Type u_1} {β : Type u_2} [Preorder β] [NoMinOrder β] {f : αβ} {l : Filter α} [l.NeBot] (hf : Tendsto f l atBot) :
¬IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
theorem Filter.IsBoundedUnder.bddAbove_range_of_cofinite {α : Type u_1} {β : Type u_2} [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] {f : αβ} (hf : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) cofinite f) :
theorem Filter.IsBoundedUnder.bddBelow_range_of_cofinite {α : Type u_1} {β : Type u_2} [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] {f : αβ} (hf : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) cofinite f) :
theorem Filter.IsBoundedUnder.bddAbove_range {β : Type u_2} [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] {f : β} (hf : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) atTop f) :
theorem Filter.IsBoundedUnder.bddBelow_range {β : Type u_2} [Preorder β] [IsDirected β fun (x1 x2 : β) => x1 x2] {f : β} (hf : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) atTop f) :
theorem Filter.IsCobounded.mk {α : Type u_1} {r : ααProp} {f : Filter α} [IsTrans α r] (a : α) (h : sf, xs, r a x) :

To check that a filter is frequently bounded, it suffices to have a witness which bounds f at some point for every admissible set.

This is only an implication, as the other direction is wrong for the trivial filter.

theorem Filter.IsBounded.isCobounded_flip {α : Type u_1} {r : ααProp} {f : Filter α} [IsTrans α r] [f.NeBot] :
IsBounded r fIsCobounded (flip r) f

A filter which is eventually bounded is in particular frequently bounded (in the opposite direction). At least if the filter is not trivial.

theorem Filter.IsBounded.isCobounded_ge {α : Type u_1} {f : Filter α} [Preorder α] [f.NeBot] (h : IsBounded (fun (x1 x2 : α) => x1 x2) f) :
IsCobounded (fun (x1 x2 : α) => x1 x2) f
theorem Filter.IsBounded.isCobounded_le {α : Type u_1} {f : Filter α} [Preorder α] [f.NeBot] (h : IsBounded (fun (x1 x2 : α) => x1 x2) f) :
IsCobounded (fun (x1 x2 : α) => x1 x2) f
theorem Filter.IsBoundedUnder.isCoboundedUnder_flip {α : Type u_1} {γ : Type u_3} {r : ααProp} {u : γα} {l : Filter γ} [IsTrans α r] [l.NeBot] (h : IsBoundedUnder r l u) :
theorem Filter.IsBoundedUnder.isCoboundedUnder_le {α : Type u_1} {γ : Type u_3} {u : γα} {l : Filter γ} [Preorder α] [l.NeBot] (h : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l u
theorem Filter.IsBoundedUnder.isCoboundedUnder_ge {α : Type u_1} {γ : Type u_3} {u : γα} {l : Filter γ} [Preorder α] [l.NeBot] (h : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l u
theorem Filter.isCoboundedUnder_le_of_eventually_le {α : Type u_1} {ι : Type u_4} [Preorder α] (l : Filter ι) [l.NeBot] {f : ια} {x : α} (hf : ∀ᶠ (i : ι) in l, x f i) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l f
theorem Filter.isCoboundedUnder_ge_of_eventually_le {α : Type u_1} {ι : Type u_4} [Preorder α] (l : Filter ι) [l.NeBot] {f : ια} {x : α} (hf : ∀ᶠ (i : ι) in l, f i x) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l f
theorem Filter.isCoboundedUnder_le_of_le {α : Type u_1} {ι : Type u_4} [Preorder α] (l : Filter ι) [l.NeBot] {f : ια} {x : α} (hf : ∀ (i : ι), x f i) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l f
theorem Filter.isCoboundedUnder_ge_of_le {α : Type u_1} {ι : Type u_4} [Preorder α] (l : Filter ι) [l.NeBot] {f : ια} {x : α} (hf : ∀ (i : ι), f i x) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) l f
theorem Filter.isCobounded_bot {α : Type u_1} {r : ααProp} :
IsCobounded r ∃ (b : α), ∀ (x : α), r b x
theorem Filter.isCobounded_top {α : Type u_1} {r : ααProp} :
theorem Filter.isCobounded_principal {α : Type u_1} {r : ααProp} (s : Set α) :
IsCobounded r (principal s) ∃ (b : α), ∀ (a : α), (∀ xs, r x a)r b a
theorem Filter.IsCobounded.mono {α : Type u_1} {r : ααProp} {f g : Filter α} (h : f g) :
theorem Filter.IsCobounded.frequently_ge {α : Type u_1} {f : Filter α} [LinearOrder α] [f.NeBot] (cobdd : IsCobounded (fun (x1 x2 : α) => x1 x2) f) :
∃ (l : α), ∃ᶠ (x : α) in f, l x

For nontrivial filters in linear orders, coboundedness for implies frequent boundedness from below.

theorem Filter.IsCobounded.frequently_le {α : Type u_1} {f : Filter α} [LinearOrder α] [f.NeBot] (cobdd : IsCobounded (fun (x1 x2 : α) => x1 x2) f) :
∃ (u : α), ∃ᶠ (x : α) in f, x u

For nontrivial filters in linear orders, coboundedness for implies frequent boundedness from above.

theorem Filter.IsCobounded.of_frequently_ge {α : Type u_1} {f : Filter α} [LinearOrder α] {l : α} (freq_ge : ∃ᶠ (x : α) in f, l x) :
IsCobounded (fun (x1 x2 : α) => x1 x2) f

In linear orders, frequent boundedness from below implies coboundedness for .

theorem Filter.IsCobounded.of_frequently_le {α : Type u_1} {f : Filter α} [LinearOrder α] {u : α} (freq_le : ∃ᶠ (r : α) in f, r u) :
IsCobounded (fun (x1 x2 : α) => x1 x2) f

In linear orders, frequent boundedness from above implies coboundedness for .

theorem Filter.IsCoboundedUnder.frequently_ge {α : Type u_1} {ι : Type u_4} [LinearOrder α] {f : Filter ι} [f.NeBot] {u : ια} (h : IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u) :
∃ (a : α), ∃ᶠ (x : ι) in f, a u x
theorem Filter.IsCoboundedUnder.frequently_le {α : Type u_1} {ι : Type u_4} [LinearOrder α] {f : Filter ι} [f.NeBot] {u : ια} (h : IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u) :
∃ (a : α), ∃ᶠ (x : ι) in f, u x a
theorem Filter.IsCoboundedUnder.of_frequently_ge {α : Type u_1} {ι : Type u_4} [LinearOrder α] {f : Filter ι} {u : ια} {a : α} (freq_ge : ∃ᶠ (x : ι) in f, a u x) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.IsCoboundedUnder.of_frequently_le {α : Type u_1} {ι : Type u_4} [LinearOrder α] {f : Filter ι} {u : ια} {a : α} (freq_le : ∃ᶠ (x : ι) in f, u x a) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.isBoundedUnder_sum {α : Type u_6} {f : Filter α} {R : Type u_7} {κ : Type u_8} [AddCommMonoid R] {r : RRProp} (hr : ∀ (v₁ v₂ : αR), IsBoundedUnder r f v₁IsBoundedUnder r f v₂IsBoundedUnder r f (v₁ + v₂)) (hr₀ : r 0 0) {u : καR} (s : Finset κ) (h : ks, IsBoundedUnder r f (u k)) :
IsBoundedUnder r f (∑ ks, u k)
theorem Filter.isBoundedUnder_ge_add {α : Type u_6} {f : Filter α} {R : Type u_7} [Preorder R] [Add R] [AddLeftMono R] [AddRightMono R] {u v : αR} (u_bdd_ge : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f u) (v_bdd_ge : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f v) :
IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (u + v)
theorem Filter.isBoundedUnder_le_add {α : Type u_6} {f : Filter α} {R : Type u_7} [Preorder R] [Add R] [AddLeftMono R] [AddRightMono R] {u v : αR} (u_bdd_le : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f u) (v_bdd_le : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f v) :
IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (u + v)
theorem Filter.isBoundedUnder_le_sum {α : Type u_6} {f : Filter α} {R : Type u_7} [Preorder R] {κ : Type u_8} [AddCommMonoid R] [AddLeftMono R] [AddRightMono R] {u : καR} (s : Finset κ) :
(∀ ks, IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (u k))IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (∑ ks, u k)
theorem Filter.isBoundedUnder_ge_sum {α : Type u_6} {f : Filter α} {R : Type u_7} [Preorder R] {κ : Type u_8} [AddCommMonoid R] [AddLeftMono R] [AddRightMono R] {u : καR} (s : Finset κ) :
(∀ ks, IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (u k))IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f (∑ ks, u k)
theorem Filter.isCoboundedUnder_ge_add {α : Type u_6} {R : Type u_7} [LinearOrder R] [Add R] {f : Filter α} [f.NeBot] [CovariantClass R R (fun (a b : R) => a + b) fun (x1 x2 : R) => x1 x2] [CovariantClass R R (fun (a b : R) => b + a) fun (x1 x2 : R) => x1 x2] {u v : αR} (hu : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f u) (hv : IsCoboundedUnder (fun (x1 x2 : R) => x1 x2) f v) :
IsCoboundedUnder (fun (x1 x2 : R) => x1 x2) f (u + v)
theorem Filter.isCoboundedUnder_le_add {α : Type u_6} {R : Type u_7} [LinearOrder R] [Add R] {f : Filter α} [f.NeBot] [CovariantClass R R (fun (a b : R) => a + b) fun (x1 x2 : R) => x1 x2] [CovariantClass R R (fun (a b : R) => b + a) fun (x1 x2 : R) => x1 x2] {u v : αR} (hu : IsBoundedUnder (fun (x1 x2 : R) => x1 x2) f u) (hv : IsCoboundedUnder (fun (x1 x2 : R) => x1 x2) f v) :
IsCoboundedUnder (fun (x1 x2 : R) => x1 x2) f (u + v)
theorem Filter.isBoundedUnder_le_mul_of_nonneg {α : Type u_1} {ι : Type u_4} [Mul α] [Zero α] [Preorder α] [PosMulMono α] [MulPosMono α] {f : Filter ι} {u v : ια} (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f v) :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f (u * v)
theorem Filter.isCoboundedUnder_ge_mul_of_nonneg {α : Type u_1} {ι : Type u_4} [Mul α] [Zero α] [LinearOrder α] [PosMulMono α] [MulPosMono α] {f : Filter ι} [f.NeBot] {u v : ια} (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f v) :
IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f (u * v)
theorem Filter.isBounded_le_atBot {α : Type u_1} [Preorder α] [Nonempty α] :
IsBounded (fun (x1 x2 : α) => x1 x2) atBot
theorem Filter.isBounded_ge_atTop {α : Type u_1} [Preorder α] [Nonempty α] :
IsBounded (fun (x1 x2 : α) => x1 x2) atTop
theorem Filter.Tendsto.isBoundedUnder_le_atBot {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] {f : Filter β} {u : βα} (h : Tendsto u f atBot) :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.Tendsto.isBoundedUnder_ge_atTop {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] {f : Filter β} {u : βα} (h : Tendsto u f atTop) :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u
theorem Filter.bddAbove_range_of_tendsto_atTop_atBot {α : Type u_1} [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] {u : α} (hx : Tendsto u atTop atBot) :
theorem Filter.bddBelow_range_of_tendsto_atTop_atTop {α : Type u_1} [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] {u : α} (hx : Tendsto u atTop atTop) :
theorem Filter.isCobounded_le_of_bot {α : Type u_1} [Preorder α] [OrderBot α] {f : Filter α} :
IsCobounded (fun (x1 x2 : α) => x1 x2) f
theorem Filter.isCobounded_ge_of_top {α : Type u_1} [Preorder α] [OrderTop α] {f : Filter α} :
IsCobounded (fun (x1 x2 : α) => x1 x2) f
theorem Filter.isBounded_le_of_top {α : Type u_1} [Preorder α] [OrderTop α] {f : Filter α} :
IsBounded (fun (x1 x2 : α) => x1 x2) f
theorem Filter.isBounded_ge_of_bot {α : Type u_1} [Preorder α] [OrderBot α] {f : Filter α} :
IsBounded (fun (x1 x2 : α) => x1 x2) f
@[simp]
theorem OrderIso.isBoundedUnder_le_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) {l : Filter γ} {u : γα} :
(Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l fun (x : γ) => e (u x)) Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
@[simp]
theorem OrderIso.isBoundedUnder_ge_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) {l : Filter γ} {u : γα} :
(Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l fun (x : γ) => e (u x)) Filter.IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
@[simp]
theorem Filter.isBoundedUnder_le_inv {α : Type u_1} {β : Type u_2} [OrderedCommGroup α] {l : Filter β} {u : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l fun (x : β) => (u x)⁻¹) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
@[simp]
theorem Filter.isBoundedUnder_le_neg {α : Type u_1} {β : Type u_2} [OrderedAddCommGroup α] {l : Filter β} {u : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l fun (x : β) => -u x) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
@[simp]
theorem Filter.isBoundedUnder_ge_inv {α : Type u_1} {β : Type u_2} [OrderedCommGroup α] {l : Filter β} {u : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l fun (x : β) => (u x)⁻¹) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
@[simp]
theorem Filter.isBoundedUnder_ge_neg {α : Type u_1} {β : Type u_2} [OrderedAddCommGroup α] {l : Filter β} {u : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l fun (x : β) => -u x) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) l u
theorem Filter.IsBoundedUnder.sup {α : Type u_1} {β : Type u_2} [SemilatticeSup α] {f : Filter β} {u v : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f uIsBoundedUnder (fun (x1 x2 : α) => x1 x2) f vIsBoundedUnder (fun (x1 x2 : α) => x1 x2) f fun (a : β) => u a v a
@[simp]
theorem Filter.isBoundedUnder_le_sup {α : Type u_1} {β : Type u_2} [SemilatticeSup α] {f : Filter β} {u v : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f fun (a : β) => u a v a) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f v
theorem Filter.IsBoundedUnder.inf {α : Type u_1} {β : Type u_2} [SemilatticeInf α] {f : Filter β} {u v : βα} :
IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f uIsBoundedUnder (fun (x1 x2 : α) => x1 x2) f vIsBoundedUnder (fun (x1 x2 : α) => x1 x2) f fun (a : β) => u a v a
@[simp]
theorem Filter.isBoundedUnder_ge_inf {α : Type u_1} {β : Type u_2} [SemilatticeInf α] {f : Filter β} {u v : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f fun (a : β) => u a v a) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f v
theorem Filter.isBoundedUnder_le_abs {α : Type u_1} {β : Type u_2} [LinearOrderedAddCommGroup α] {f : Filter β} {u : βα} :
(IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f fun (a : β) => |u a|) IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u

Filters are automatically bounded or cobounded in complete lattices. To use the same statements in complete and conditionally complete lattices but let automation fill automatically the boundedness proofs in complete lattices, we use the tactic isBoundedDefault in the statements, in the form (hf : f.IsBounded (≥) := by isBoundedDefault).

Equations
Instances For
    def Filter.limsSup {α : Type u_1} [ConditionallyCompleteLattice α] (f : Filter α) :
    α

    The limsSup of a filter f is the infimum of the a such that, eventually for f, holds x ≤ a.

    Equations
    Instances For
      def Filter.limsInf {α : Type u_1} [ConditionallyCompleteLattice α] (f : Filter α) :
      α

      The limsInf of a filter f is the supremum of the a such that, eventually for f, holds x ≥ a.

      Equations
      Instances For
        def Filter.limsup {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (u : βα) (f : Filter β) :
        α

        The limsup of a function u along a filter f is the infimum of the a such that, eventually for f, holds u x ≤ a.

        Equations
        Instances For
          def Filter.liminf {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (u : βα) (f : Filter β) :
          α

          The liminf of a function u along a filter f is the supremum of the a such that, eventually for f, holds u x ≥ a.

          Equations
          Instances For
            def Filter.blimsup {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (u : βα) (f : Filter β) (p : βProp) :
            α

            The blimsup of a function u along a filter f, bounded by a predicate p, is the infimum of the a such that, eventually for f, u x ≤ a whenever p x holds.

            Equations
            Instances For
              def Filter.bliminf {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (u : βα) (f : Filter β) (p : βProp) :
              α

              The bliminf of a function u along a filter f, bounded by a predicate p, is the supremum of the a such that, eventually for f, a ≤ u x whenever p x holds.

              Equations
              Instances For
                theorem Filter.limsup_eq {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} :
                limsup u f = sInf {a : α | ∀ᶠ (n : β) in f, u n a}
                theorem Filter.liminf_eq {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} :
                liminf u f = sSup {a : α | ∀ᶠ (n : β) in f, a u n}
                theorem Filter.blimsup_eq {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                blimsup u f p = sInf {a : α | ∀ᶠ (x : β) in f, p xu x a}
                theorem Filter.bliminf_eq {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                bliminf u f p = sSup {a : α | ∀ᶠ (x : β) in f, p xa u x}
                theorem Filter.liminf_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [ConditionallyCompleteLattice α] (u : βα) (v : γβ) (f : Filter γ) :
                liminf (u v) f = liminf u (map v f)
                theorem Filter.limsup_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [ConditionallyCompleteLattice α] (u : βα) (v : γβ) (f : Filter γ) :
                limsup (u v) f = limsup u (map v f)
                @[simp]
                theorem Filter.blimsup_true {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (f : Filter β) (u : βα) :
                (blimsup u f fun (x : β) => True) = limsup u f
                @[simp]
                theorem Filter.bliminf_true {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] (f : Filter β) (u : βα) :
                (bliminf u f fun (x : β) => True) = liminf u f
                theorem Filter.blimsup_eq_limsup {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                blimsup u f p = limsup u (f principal {x : β | p x})
                theorem Filter.bliminf_eq_liminf {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                bliminf u f p = liminf u (f principal {x : β | p x})
                theorem Filter.blimsup_eq_limsup_subtype {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                theorem Filter.bliminf_eq_liminf_subtype {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {p : βProp} :
                theorem Filter.limsSup_le_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f : Filter α} {a : α} (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : ∀ᶠ (n : α) in f, n a) :
                f.limsSup a
                theorem Filter.le_limsInf_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f : Filter α} {a : α} (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : ∀ᶠ (n : α) in f, a n) :
                a f.limsInf
                theorem Filter.limsup_le_of_le {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {a : α} (hf : IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) (h : ∀ᶠ (n : β) in f, u n a) :
                limsup u f a
                theorem Filter.le_liminf_of_le {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {a : α} (hf : IsCoboundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) (h : ∀ᶠ (n : β) in f, a u n) :
                a liminf u f
                theorem Filter.le_limsSup_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f : Filter α} {a : α} (hf : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : ∀ (b : α), (∀ᶠ (n : α) in f, n b)a b) :
                a f.limsSup
                theorem Filter.limsInf_le_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f : Filter α} {a : α} (hf : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : ∀ (b : α), (∀ᶠ (n : α) in f, b n)b a) :
                f.limsInf a
                theorem Filter.le_limsup_of_le {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {a : α} (hf : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) (h : ∀ (b : α), (∀ᶠ (n : β) in f, u n b)a b) :
                a limsup u f
                theorem Filter.liminf_le_of_le {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u : βα} {a : α} (hf : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) (h : ∀ (b : α), (∀ᶠ (n : β) in f, b u n)b a) :
                liminf u f a
                theorem Filter.limsInf_le_limsSup {α : Type u_1} [ConditionallyCompleteLattice α] {f : Filter α} [f.NeBot] (h₁ : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h₂ : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) :
                f.limsInf f.limsSup
                theorem Filter.liminf_le_limsup {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} [f.NeBot] {u : βα} (h : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) (h' : IsBoundedUnder (fun (x1 x2 : α) => x1 x2) f u := by isBoundedDefault) :
                liminf u f limsup u f
                theorem Filter.limsSup_le_limsSup {α : Type u_1} [ConditionallyCompleteLattice α] {f g : Filter α} (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (hg : IsBounded (fun (x1 x2 : α) => x1 x2) g := by isBoundedDefault) (h : ∀ (a : α), (∀ᶠ (n : α) in g, n a)∀ᶠ (n : α) in f, n a) :
                f.limsSup g.limsSup
                theorem Filter.limsInf_le_limsInf {α : Type u_1} [ConditionallyCompleteLattice α] {f g : Filter α} (hf : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (hg : IsCobounded (fun (x1 x2 : α) => x1 x2) g := by isBoundedDefault) (h : ∀ (a : α), (∀ᶠ (n : α) in f, a n)∀ᶠ (n : α) in g, a n) :
                f.limsInf g.limsInf
                theorem Filter.limsup_le_limsup {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} {u v : αβ} (h : u ≤ᶠ[f] v) (hu : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hv : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) :
                limsup u f limsup v f
                theorem Filter.liminf_le_liminf {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} {u v : αβ} (h : ∀ᶠ (a : α) in f, u a v a) (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hv : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) :
                liminf u f liminf v f
                theorem Filter.limsSup_le_limsSup_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f g : Filter α} (h : f g) (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (hg : IsBounded (fun (x1 x2 : α) => x1 x2) g := by isBoundedDefault) :
                f.limsSup g.limsSup
                theorem Filter.limsInf_le_limsInf_of_le {α : Type u_1} [ConditionallyCompleteLattice α] {f g : Filter α} (h : g f) (hf : IsBounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (hg : IsCobounded (fun (x1 x2 : α) => x1 x2) g := by isBoundedDefault) :
                f.limsInf g.limsInf
                theorem Filter.limsup_le_limsup_of_le {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLattice β] {f g : Filter α} (h : f g) {u : αβ} (hf : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hg : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) g u := by isBoundedDefault) :
                limsup u f limsup u g
                theorem Filter.liminf_le_liminf_of_le {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLattice β] {f g : Filter α} (h : g f) {u : αβ} (hf : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hg : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) g u := by isBoundedDefault) :
                liminf u f liminf u g
                theorem Filter.limsSup_principal_eq_csSup {α : Type u_1} [ConditionallyCompleteLattice α] {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
                (principal s).limsSup = sSup s
                theorem Filter.limsInf_principal_eq_csSup {α : Type u_1} [ConditionallyCompleteLattice α] {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
                (principal s).limsInf = sInf s
                theorem Filter.limsup_top_eq_ciSup {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {u : βα} [Nonempty β] (hu : BddAbove (Set.range u)) :
                limsup u = ⨆ (i : β), u i
                theorem Filter.liminf_top_eq_ciInf {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {u : βα} [Nonempty β] (hu : BddBelow (Set.range u)) :
                liminf u = ⨅ (i : β), u i
                theorem Filter.limsup_congr {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} {u v : αβ} (h : ∀ᶠ (a : α) in f, u a = v a) :
                limsup u f = limsup v f
                theorem Filter.blimsup_congr {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u v : βα} {p : βProp} (h : ∀ᶠ (a : β) in f, p au a = v a) :
                blimsup u f p = blimsup v f p
                theorem Filter.bliminf_congr {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {f : Filter β} {u v : βα} {p : βProp} (h : ∀ᶠ (a : β) in f, p au a = v a) :
                bliminf u f p = bliminf v f p
                theorem Filter.liminf_congr {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} {u v : αβ} (h : ∀ᶠ (a : α) in f, u a = v a) :
                liminf u f = liminf v f
                @[simp]
                theorem Filter.limsup_const {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} [f.NeBot] (b : β) :
                limsup (fun (x : α) => b) f = b
                @[simp]
                theorem Filter.liminf_const {β : Type u_2} {α : Type u_6} [ConditionallyCompleteLattice β] {f : Filter α} [f.NeBot] (b : β) :
                liminf (fun (x : α) => b) f = b
                theorem Filter.HasBasis.liminf_eq_sSup_iUnion_iInter {α : Type u_1} [ConditionallyCompleteLattice α] {ι : Type u_6} {ι' : Type u_7} {f : ια} {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} (hv : v.HasBasis p s) :
                liminf f v = sSup (⋃ (j : Subtype p), ⋂ (i : (s j)), Set.Iic (f i))
                theorem Filter.HasBasis.liminf_eq_sSup_univ_of_empty {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLattice α] {f : ια} {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} (hv : v.HasBasis p s) (i : ι') (hi : p i) (h'i : s i = ) :
                theorem Filter.HasBasis.limsup_eq_sInf_iUnion_iInter {α : Type u_1} [ConditionallyCompleteLattice α] {ι : Type u_6} {ι' : Type u_7} {f : ια} {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} (hv : v.HasBasis p s) :
                limsup f v = sInf (⋃ (j : Subtype p), ⋂ (i : (s j)), Set.Ici (f i))
                theorem Filter.HasBasis.limsup_eq_sInf_univ_of_empty {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLattice α] {f : ια} {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} (hv : v.HasBasis p s) (i : ι') (hi : p i) (h'i : s i = ) :
                @[simp]
                theorem Filter.liminf_nat_add {α : Type u_1} [ConditionallyCompleteLattice α] (f : α) (k : ) :
                liminf (fun (i : ) => f (i + k)) atTop = liminf f atTop
                @[simp]
                theorem Filter.limsup_nat_add {α : Type u_1} [ConditionallyCompleteLattice α] (f : α) (k : ) :
                limsup (fun (i : ) => f (i + k)) atTop = limsup f atTop
                @[simp]
                theorem Filter.limsSup_bot {α : Type u_1} [CompleteLattice α] :
                .limsSup =
                @[simp]
                theorem Filter.limsup_bot {α : Type u_1} {β : Type u_2} [CompleteLattice α] (f : βα) :
                @[simp]
                theorem Filter.limsInf_bot {α : Type u_1} [CompleteLattice α] :
                .limsInf =
                @[simp]
                theorem Filter.liminf_bot {α : Type u_1} {β : Type u_2} [CompleteLattice α] (f : βα) :
                @[simp]
                theorem Filter.limsSup_top {α : Type u_1} [CompleteLattice α] :
                .limsSup =
                @[simp]
                theorem Filter.limsInf_top {α : Type u_1} [CompleteLattice α] :
                .limsInf =
                @[simp]
                theorem Filter.blimsup_false {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                (blimsup u f fun (x : β) => False) =
                @[simp]
                theorem Filter.bliminf_false {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                (bliminf u f fun (x : β) => False) =
                @[simp]
                theorem Filter.limsup_const_bot {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} :
                limsup (fun (x : β) => ) f =

                Same as limsup_const applied to but without the NeBot f assumption

                @[simp]
                theorem Filter.liminf_const_top {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} :
                liminf (fun (x : β) => ) f =

                Same as limsup_const applied to but without the NeBot f assumption

                theorem Filter.HasBasis.limsSup_eq_iInf_sSup {α : Type u_1} [CompleteLattice α] {ι : Sort u_6} {p : ιProp} {s : ιSet α} {f : Filter α} (h : f.HasBasis p s) :
                f.limsSup = ⨅ (i : ι), ⨅ (_ : p i), sSup (s i)
                theorem Filter.HasBasis.limsInf_eq_iSup_sInf {α : Type u_1} {ι : Type u_4} [CompleteLattice α] {p : ιProp} {s : ιSet α} {f : Filter α} (h : f.HasBasis p s) :
                f.limsInf = ⨆ (i : ι), ⨆ (_ : p i), sInf (s i)
                theorem Filter.limsSup_eq_iInf_sSup {α : Type u_1} [CompleteLattice α] {f : Filter α} :
                f.limsSup = sf, sSup s
                theorem Filter.limsInf_eq_iSup_sInf {α : Type u_1} [CompleteLattice α] {f : Filter α} :
                f.limsInf = sf, sInf s
                theorem Filter.limsup_le_iSup {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                limsup u f ⨆ (n : β), u n
                theorem Filter.iInf_le_liminf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                ⨅ (n : β), u n liminf u f
                theorem Filter.limsup_eq_iInf_iSup {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                limsup u f = sf, as, u a

                In a complete lattice, the limsup of a function is the infimum over sets s in the filter of the supremum of the function over s

                theorem Filter.limsup_eq_iInf_iSup_of_nat {α : Type u_1} [CompleteLattice α] {u : α} :
                limsup u atTop = ⨅ (n : ), ⨆ (i : ), ⨆ (_ : i n), u i
                theorem Filter.limsup_eq_iInf_iSup_of_nat' {α : Type u_1} [CompleteLattice α] {u : α} :
                limsup u atTop = ⨅ (n : ), ⨆ (i : ), u (i + n)
                theorem Filter.HasBasis.limsup_eq_iInf_iSup {α : Type u_1} {β : Type u_2} {ι : Type u_4} [CompleteLattice α] {p : ιProp} {s : ιSet β} {f : Filter β} {u : βα} (h : f.HasBasis p s) :
                limsup u f = ⨅ (i : ι), ⨅ (_ : p i), as i, u a
                theorem Filter.limsSup_principal_eq_sSup {α : Type u_1} [CompleteLattice α] (s : Set α) :
                (principal s).limsSup = sSup s
                theorem Filter.limsInf_principal_eq_sInf {α : Type u_1} [CompleteLattice α] (s : Set α) :
                (principal s).limsInf = sInf s
                @[simp]
                theorem Filter.limsup_top_eq_iSup {α : Type u_1} {β : Type u_2} [CompleteLattice α] (u : βα) :
                limsup u = ⨆ (i : β), u i
                @[simp]
                theorem Filter.liminf_top_eq_iInf {α : Type u_1} {β : Type u_2} [CompleteLattice α] (u : βα) :
                liminf u = ⨅ (i : β), u i
                @[deprecated Filter.limsSup_principal_eq_sSup (since := "2024-08-27")]
                theorem Filter.limsSup_principal {α : Type u_1} [CompleteLattice α] (s : Set α) :
                (principal s).limsSup = sSup s

                Alias of Filter.limsSup_principal_eq_sSup.

                @[deprecated Filter.limsInf_principal_eq_sInf (since := "2024-08-27")]
                theorem Filter.limsInf_principal {α : Type u_1} [CompleteLattice α] (s : Set α) :
                (principal s).limsInf = sInf s

                Alias of Filter.limsInf_principal_eq_sInf.

                @[deprecated Filter.limsup_top_eq_iSup (since := "2024-08-27")]
                theorem Filter.limsup_top {α : Type u_1} {β : Type u_2} [CompleteLattice α] (u : βα) :
                limsup u = ⨆ (i : β), u i

                Alias of Filter.limsup_top_eq_iSup.

                @[deprecated Filter.liminf_top_eq_iInf (since := "2024-08-27")]
                theorem Filter.liminf_top {α : Type u_1} {β : Type u_2} [CompleteLattice α] (u : βα) :
                liminf u = ⨅ (i : β), u i

                Alias of Filter.liminf_top_eq_iInf.

                theorem Filter.blimsup_congr' {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} (h : ∀ᶠ (x : β) in f, u x (p x q x)) :
                blimsup u f p = blimsup u f q
                theorem Filter.bliminf_congr' {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} (h : ∀ᶠ (x : β) in f, u x (p x q x)) :
                bliminf u f p = bliminf u f q
                theorem Filter.HasBasis.blimsup_eq_iInf_iSup {α : Type u_1} {β : Type u_2} {ι : Type u_4} [CompleteLattice α] {p : ιProp} {s : ιSet β} {f : Filter β} {u : βα} (hf : f.HasBasis p s) {q : βProp} :
                blimsup u f q = ⨅ (i : ι), ⨅ (_ : p i), as i, ⨆ (_ : q a), u a
                theorem Filter.blimsup_eq_iInf_biSup {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} :
                blimsup u f p = sf, ⨆ (b : β), ⨆ (_ : p b b s), u b
                theorem Filter.blimsup_eq_iInf_biSup_of_nat {α : Type u_1} [CompleteLattice α] {p : Prop} {u : α} :
                blimsup u atTop p = ⨅ (i : ), ⨆ (j : ), ⨆ (_ : p j i j), u j
                theorem Filter.liminf_eq_iSup_iInf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {u : βα} :
                liminf u f = sf, as, u a

                In a complete lattice, the liminf of a function is the infimum over sets s in the filter of the supremum of the function over s

                theorem Filter.liminf_eq_iSup_iInf_of_nat {α : Type u_1} [CompleteLattice α] {u : α} :
                liminf u atTop = ⨆ (n : ), ⨅ (i : ), ⨅ (_ : i n), u i
                theorem Filter.liminf_eq_iSup_iInf_of_nat' {α : Type u_1} [CompleteLattice α] {u : α} :
                liminf u atTop = ⨆ (n : ), ⨅ (i : ), u (i + n)
                theorem Filter.HasBasis.liminf_eq_iSup_iInf {α : Type u_1} {β : Type u_2} {ι : Type u_4} [CompleteLattice α] {p : ιProp} {s : ιSet β} {f : Filter β} {u : βα} (h : f.HasBasis p s) :
                liminf u f = ⨆ (i : ι), ⨆ (_ : p i), as i, u a
                theorem Filter.bliminf_eq_iSup_biInf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} :
                bliminf u f p = sf, ⨅ (b : β), ⨅ (_ : p b b s), u b
                theorem Filter.bliminf_eq_iSup_biInf_of_nat {α : Type u_1} [CompleteLattice α] {p : Prop} {u : α} :
                bliminf u atTop p = ⨆ (i : ), ⨅ (j : ), ⨅ (_ : p j i j), u j
                theorem Filter.limsup_eq_sInf_sSup {ι : Type u_6} {R : Type u_7} (F : Filter ι) [CompleteLattice R] (a : ιR) :
                limsup a F = sInf ((fun (I : Set ι) => sSup (a '' I)) '' F.sets)
                theorem Filter.liminf_eq_sSup_sInf {ι : Type u_6} {R : Type u_7} (F : Filter ι) [CompleteLattice R] (a : ιR) :
                liminf a F = sSup ((fun (I : Set ι) => sInf (a '' I)) '' F.sets)
                theorem Filter.liminf_le_of_frequently_le' {α : Type u_6} {β : Type u_7} [CompleteLattice β] {f : Filter α} {u : αβ} {x : β} (h : ∃ᶠ (a : α) in f, u a x) :
                liminf u f x
                theorem Filter.le_limsup_of_frequently_le' {α : Type u_6} {β : Type u_7} [CompleteLattice β] {f : Filter α} {u : αβ} {x : β} (h : ∃ᶠ (a : α) in f, x u a) :
                x limsup u f
                @[simp]
                theorem CompleteLatticeHom.apply_limsup_iterate {α : Type u_1} [CompleteLattice α] (f : CompleteLatticeHom α α) (a : α) :
                f (Filter.limsup (fun (n : ) => (⇑f)^[n] a) Filter.atTop) = Filter.limsup (fun (n : ) => (⇑f)^[n] a) Filter.atTop

                If f : α → α is a morphism of complete lattices, then the limsup of its iterates of any a : α is a fixed point.

                @[deprecated CompleteLatticeHom.apply_limsup_iterate (since := "2024-07-21")]
                theorem Filter.CompleteLatticeHom.apply_limsup_iterate {α : Type u_1} [CompleteLattice α] (f : CompleteLatticeHom α α) (a : α) :
                f (limsup (fun (n : ) => (⇑f)^[n] a) atTop) = limsup (fun (n : ) => (⇑f)^[n] a) atTop

                Alias of CompleteLatticeHom.apply_limsup_iterate.


                If f : α → α is a morphism of complete lattices, then the limsup of its iterates of any a : α is a fixed point.

                theorem CompleteLatticeHom.apply_liminf_iterate {α : Type u_1} [CompleteLattice α] (f : CompleteLatticeHom α α) (a : α) :
                f (Filter.liminf (fun (n : ) => (⇑f)^[n] a) Filter.atTop) = Filter.liminf (fun (n : ) => (⇑f)^[n] a) Filter.atTop

                If f : α → α is a morphism of complete lattices, then the liminf of its iterates of any a : α is a fixed point.

                @[deprecated CompleteLatticeHom.apply_liminf_iterate (since := "2024-07-21")]
                theorem Filter.CompleteLatticeHom.apply_liminf_iterate {α : Type u_1} [CompleteLattice α] (f : CompleteLatticeHom α α) (a : α) :
                f (liminf (fun (n : ) => (⇑f)^[n] a) atTop) = liminf (fun (n : ) => (⇑f)^[n] a) atTop

                Alias of CompleteLatticeHom.apply_liminf_iterate.


                If f : α → α is a morphism of complete lattices, then the liminf of its iterates of any a : α is a fixed point.

                theorem Filter.blimsup_mono {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} (h : ∀ (x : β), p xq x) :
                blimsup u f p blimsup u f q
                theorem Filter.bliminf_antitone {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} (h : ∀ (x : β), p xq x) :
                bliminf u f q bliminf u f p
                theorem Filter.mono_blimsup' {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u v : βα} (h : ∀ᶠ (x : β) in f, p xu x v x) :
                blimsup u f p blimsup v f p
                theorem Filter.mono_blimsup {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u v : βα} (h : ∀ (x : β), p xu x v x) :
                blimsup u f p blimsup v f p
                theorem Filter.mono_bliminf' {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u v : βα} (h : ∀ᶠ (x : β) in f, p xu x v x) :
                bliminf u f p bliminf v f p
                theorem Filter.mono_bliminf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p : βProp} {u v : βα} (h : ∀ (x : β), p xu x v x) :
                bliminf u f p bliminf v f p
                theorem Filter.bliminf_antitone_filter {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f g : Filter β} {p : βProp} {u : βα} (h : f g) :
                bliminf u g p bliminf u f p
                theorem Filter.blimsup_monotone_filter {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f g : Filter β} {p : βProp} {u : βα} (h : f g) :
                blimsup u f p blimsup u g p
                theorem Filter.blimsup_and_le_inf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (blimsup u f fun (x : β) => p x q x) blimsup u f p blimsup u f q
                @[simp]
                theorem Filter.bliminf_sup_le_inf_aux_left {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (blimsup u f fun (x : β) => p x q x) blimsup u f p
                @[simp]
                theorem Filter.bliminf_sup_le_inf_aux_right {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (blimsup u f fun (x : β) => p x q x) blimsup u f q
                theorem Filter.bliminf_sup_le_and {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                bliminf u f p bliminf u f q bliminf u f fun (x : β) => p x q x
                @[simp]
                theorem Filter.bliminf_sup_le_and_aux_left {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                bliminf u f p bliminf u f fun (x : β) => p x q x
                @[simp]
                theorem Filter.bliminf_sup_le_and_aux_right {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                bliminf u f q bliminf u f fun (x : β) => p x q x
                theorem Filter.blimsup_sup_le_or {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                blimsup u f p blimsup u f q blimsup u f fun (x : β) => p x q x

                See also Filter.blimsup_or_eq_sup.

                @[simp]
                theorem Filter.bliminf_sup_le_or_aux_left {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                blimsup u f p blimsup u f fun (x : β) => p x q x
                @[simp]
                theorem Filter.bliminf_sup_le_or_aux_right {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                blimsup u f q blimsup u f fun (x : β) => p x q x
                theorem Filter.bliminf_or_le_inf {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (bliminf u f fun (x : β) => p x q x) bliminf u f p bliminf u f q

                See also Filter.bliminf_or_eq_inf.

                @[simp]
                theorem Filter.bliminf_or_le_inf_aux_left {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (bliminf u f fun (x : β) => p x q x) bliminf u f p
                @[simp]
                theorem Filter.bliminf_or_le_inf_aux_right {α : Type u_1} {β : Type u_2} [CompleteLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (bliminf u f fun (x : β) => p x q x) bliminf u f q
                theorem OrderIso.apply_blimsup {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (e : α ≃o γ) :
                e (Filter.blimsup u f p) = Filter.blimsup (e u) f p
                @[deprecated OrderIso.apply_blimsup (since := "2024-07-21")]
                theorem Filter.OrderIso.apply_blimsup {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (e : α ≃o γ) :
                e (blimsup u f p) = blimsup (e u) f p

                Alias of OrderIso.apply_blimsup.

                theorem OrderIso.apply_bliminf {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (e : α ≃o γ) :
                e (Filter.bliminf u f p) = Filter.bliminf (e u) f p
                @[deprecated OrderIso.apply_bliminf (since := "2024-07-21")]
                theorem Filter.OrderIso.apply_bliminf {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (e : α ≃o γ) :
                e (bliminf u f p) = bliminf (e u) f p

                Alias of OrderIso.apply_bliminf.

                theorem sSupHom.apply_blimsup_le {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (g : sSupHom α γ) :
                g (Filter.blimsup u f p) Filter.blimsup (g u) f p
                @[deprecated sSupHom.apply_blimsup_le (since := "2024-07-21")]
                theorem Filter.SupHom.apply_blimsup_le {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (g : sSupHom α γ) :
                g (blimsup u f p) blimsup (g u) f p

                Alias of sSupHom.apply_blimsup_le.

                theorem sInfHom.le_apply_bliminf {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (g : sInfHom α γ) :
                Filter.bliminf (g u) f p g (Filter.bliminf u f p)
                @[deprecated sInfHom.le_apply_bliminf (since := "2024-07-21")]
                theorem Filter.InfHom.le_apply_bliminf {α : Type u_1} {β : Type u_2} {γ : Type u_3} [CompleteLattice α] {f : Filter β} {p : βProp} {u : βα} [CompleteLattice γ] (g : sInfHom α γ) :
                bliminf (g u) f p g (bliminf u f p)

                Alias of sInfHom.le_apply_bliminf.

                theorem Filter.limsup_sup_filter {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} {g : Filter β} :
                limsup u (f g) = limsup u f limsup u g
                theorem Filter.liminf_sup_filter {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} {g : Filter β} :
                liminf u (f g) = liminf u f liminf u g
                @[simp]
                theorem Filter.blimsup_or_eq_sup {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (blimsup u f fun (x : β) => p x q x) = blimsup u f p blimsup u f q
                @[simp]
                theorem Filter.bliminf_or_eq_inf {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p q : βProp} {u : βα} :
                (bliminf u f fun (x : β) => p x q x) = bliminf u f p bliminf u f q
                @[simp]
                theorem Filter.blimsup_sup_not {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p : βProp} {u : βα} :
                (blimsup u f p blimsup u f fun (x : β) => ¬p x) = limsup u f
                @[simp]
                theorem Filter.bliminf_inf_not {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p : βProp} {u : βα} :
                (bliminf u f p bliminf u f fun (x : β) => ¬p x) = liminf u f
                @[simp]
                theorem Filter.blimsup_not_sup {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p : βProp} {u : βα} :
                (blimsup u f fun (x : β) => ¬p x) blimsup u f p = limsup u f
                @[simp]
                theorem Filter.bliminf_not_inf {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {p : βProp} {u : βα} :
                (bliminf u f fun (x : β) => ¬p x) bliminf u f p = liminf u f
                theorem Filter.limsup_piecewise {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} {s : Set β} [DecidablePred fun (x : β) => x s] {v : βα} :
                limsup (s.piecewise u v) f = (blimsup u f fun (x : β) => x s) blimsup v f fun (x : β) => xs
                theorem Filter.liminf_piecewise {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} {s : Set β} [DecidablePred fun (x : β) => x s] {v : βα} :
                liminf (s.piecewise u v) f = (bliminf u f fun (x : β) => x s) bliminf v f fun (x : β) => xs
                theorem Filter.sup_limsup {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} [f.NeBot] (a : α) :
                a limsup u f = limsup (fun (x : β) => a u x) f
                theorem Filter.inf_liminf {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} [f.NeBot] (a : α) :
                a liminf u f = liminf (fun (x : β) => a u x) f
                theorem Filter.sup_liminf {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} (a : α) :
                a liminf u f = liminf (fun (x : β) => a u x) f
                theorem Filter.inf_limsup {α : Type u_1} {β : Type u_2} [CompleteDistribLattice α] {f : Filter β} {u : βα} (a : α) :
                a limsup u f = limsup (fun (x : β) => a u x) f
                theorem Filter.limsup_compl {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) :
                (limsup u f) = liminf (compl u) f
                theorem Filter.liminf_compl {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) :
                (liminf u f) = limsup (compl u) f
                theorem Filter.limsup_sdiff {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) (a : α) :
                limsup u f \ a = limsup (fun (b : β) => u b \ a) f
                theorem Filter.liminf_sdiff {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) [f.NeBot] (a : α) :
                liminf u f \ a = liminf (fun (b : β) => u b \ a) f
                theorem Filter.sdiff_limsup {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) [f.NeBot] (a : α) :
                a \ limsup u f = liminf (fun (b : β) => a \ u b) f
                theorem Filter.sdiff_liminf {α : Type u_1} {β : Type u_2} [CompleteBooleanAlgebra α] (f : Filter β) (u : βα) (a : α) :
                a \ liminf u f = limsup (fun (b : β) => a \ u b) f
                theorem Filter.mem_liminf_iff_eventually_mem {α : Type u_1} {ι : Type u_4} {s : ιSet α} {𝓕 : Filter ι} {a : α} :
                a liminf s 𝓕 ∀ᶠ (i : ι) in 𝓕, a s i
                theorem Filter.mem_limsup_iff_frequently_mem {α : Type u_1} {ι : Type u_4} {s : ιSet α} {𝓕 : Filter ι} {a : α} :
                a limsup s 𝓕 ∃ᶠ (i : ι) in 𝓕, a s i
                theorem Filter.cofinite.blimsup_set_eq {α : Type u_1} {ι : Type u_4} {p : ιProp} {s : ιSet α} :
                blimsup s cofinite p = {x : α | {n : ι | p n x s n}.Infinite}
                theorem Filter.cofinite.bliminf_set_eq {α : Type u_1} {ι : Type u_4} {p : ιProp} {s : ιSet α} :
                bliminf s cofinite p = {x : α | {n : ι | p n xs n}.Finite}
                theorem Filter.cofinite.limsup_set_eq {α : Type u_1} {ι : Type u_4} {s : ιSet α} :
                limsup s cofinite = {x : α | {n : ι | x s n}.Infinite}

                In other words, limsup cofinite s is the set of elements lying inside the family s infinitely often.

                theorem Filter.cofinite.liminf_set_eq {α : Type u_1} {ι : Type u_4} {s : ιSet α} :
                liminf s cofinite = {x : α | {n : ι | xs n}.Finite}

                In other words, liminf cofinite s is the set of elements lying outside the family s finitely often.

                theorem Filter.exists_forall_mem_of_hasBasis_mem_blimsup {α : Type u_1} {β : Type u_2} {ι : Type u_4} {l : Filter β} {b : ιSet β} {q : ιProp} (hl : l.HasBasis q b) {u : βSet α} {p : βProp} {x : α} (hx : x blimsup u l p) :
                ∃ (f : {i : ι | q i}β), ∀ (i : {i : ι | q i}), x u (f i) p (f i) f i b i
                theorem Filter.exists_forall_mem_of_hasBasis_mem_blimsup' {α : Type u_1} {β : Type u_2} {ι : Type u_4} {l : Filter β} {b : ιSet β} (hl : l.HasBasis (fun (x : ι) => True) b) {u : βSet α} {p : βProp} {x : α} (hx : x blimsup u l p) :
                ∃ (f : ιβ), ∀ (i : ι), x u (f i) p (f i) f i b i
                theorem Filter.frequently_lt_of_lt_limsSup {α : Type u_1} {f : Filter α} [ConditionallyCompleteLinearOrder α] {a : α} (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : a < f.limsSup) :
                ∃ᶠ (n : α) in f, a < n
                theorem Filter.frequently_lt_of_limsInf_lt {α : Type u_1} {f : Filter α} [ConditionallyCompleteLinearOrder α] {a : α} (hf : IsCobounded (fun (x1 x2 : α) => x1 x2) f := by isBoundedDefault) (h : f.limsInf < a) :
                ∃ᶠ (n : α) in f, n < a
                theorem Filter.eventually_lt_of_lt_liminf {α : Type u_1} {β : Type u_2} {f : Filter α} [ConditionallyCompleteLinearOrder β] {u : αβ} {b : β} (h : b < liminf u f) (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                ∀ᶠ (a : α) in f, b < u a
                theorem Filter.eventually_lt_of_limsup_lt {α : Type u_1} {β : Type u_2} {f : Filter α} [ConditionallyCompleteLinearOrder β] {u : αβ} {b : β} (h : limsup u f < b) (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                ∀ᶠ (a : α) in f, u a < b
                theorem Filter.eventually_lt_add_pos_of_limsup_le {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [Preorder β] [AddMonoid α] [AddLeftStrictMono α] {x ε : α} {u : βα} (hu_bdd : IsBoundedUnder LE.le atTop u) (hu : limsup u atTop x) (hε : 0 < ε) :
                ∀ᶠ (b : β) in atTop, u b < x + ε

                If Filter.limsup u atTop ≤ x, then for all ε > 0, eventually we have u b < x + ε.

                theorem Filter.eventually_add_neg_lt_of_le_liminf {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [Preorder β] [AddMonoid α] [AddLeftStrictMono α] {x ε : α} {u : βα} (hu_bdd : IsBoundedUnder GE.ge atTop u) (hu : x liminf u atTop) (hε : ε < 0) :
                ∀ᶠ (b : β) in atTop, x + ε < u b

                If x ≤ Filter.liminf u atTop, then for all ε < 0, eventually we have x + ε < u b.

                theorem Filter.exists_lt_of_limsup_le {α : Type u_1} [ConditionallyCompleteLinearOrder α] [AddMonoid α] [AddLeftStrictMono α] {x ε : α} {u : α} (hu_bdd : IsBoundedUnder LE.le atTop u) (hu : limsup u atTop x) (hε : 0 < ε) :
                ∃ (n : ℕ+), u n < x + ε

                If Filter.limsup u atTop ≤ x, then for all ε > 0, there exists a positive natural number n such that u n < x + ε.

                theorem Filter.exists_lt_of_le_liminf {α : Type u_1} [ConditionallyCompleteLinearOrder α] [AddMonoid α] [AddLeftStrictMono α] {x ε : α} {u : α} (hu_bdd : IsBoundedUnder GE.ge atTop u) (hu : x liminf u atTop) (hε : ε < 0) :
                ∃ (n : ℕ+), x + ε < u n

                If x ≤ Filter.liminf u atTop, then for all ε < 0, there exists a positive natural number n such that x + ε < u n.

                theorem Filter.le_limsup_of_frequently_le {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {b : β} (hu_le : ∃ᶠ (x : α) in f, b u x) (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                b limsup u f
                theorem Filter.liminf_le_of_frequently_le {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {b : β} (hu_le : ∃ᶠ (x : α) in f, u x b) (hu : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                liminf u f b
                theorem Filter.frequently_lt_of_lt_limsup {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {b : β} (hu : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h : b < limsup u f) :
                ∃ᶠ (x : α) in f, b < u x
                theorem Filter.frequently_lt_of_liminf_lt {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {b : β} (hu : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h : liminf u f < b) :
                ∃ᶠ (x : α) in f, u x < b
                theorem Filter.limsup_le_iff {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {x : β} (h₁ : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                limsup u f x y > x, ∀ᶠ (a : α) in f, u a < y
                theorem Filter.le_limsup_iff {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {x : β} (h₁ : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                x limsup u f y < x, ∃ᶠ (a : α) in f, y < u a
                theorem Filter.le_liminf_iff {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {x : β} (h₁ : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                x liminf u f y < x, ∀ᶠ (a : α) in f, y < u a
                theorem Filter.liminf_le_iff {α : Type u_6} {β : Type u_7} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u : αβ} {x : β} (h₁ : IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) :
                liminf u f x y > x, ∃ᶠ (a : α) in f, u a < y
                theorem Filter.lt_mem_sets_of_limsSup_lt {α : Type u_1} [ConditionallyCompleteLinearOrder α] {f : Filter α} {b : α} (h : IsBounded (fun (x1 x2 : α) => x1 x2) f) (l : f.limsSup < b) :
                ∀ᶠ (a : α) in f, a < b
                theorem Filter.gt_mem_sets_of_limsInf_gt {α : Type u_1} [ConditionallyCompleteLinearOrder α] {f : Filter α} {b : α} :
                IsBounded (fun (x1 x2 : α) => x1 x2) fb < f.limsInf∀ᶠ (a : α) in f, b < a
                noncomputable def Filter.liminf_reparam {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] (f : ια) (s : ι'Set ι) (p : ι'Prop) [Countable (Subtype p)] [Nonempty (Subtype p)] (j : Subtype p) :

                Given an indexed family of sets s j over j : Subtype p and a function f, then liminf_reparam j is equal to j if f is bounded below on s j, and otherwise to some index k such that f is bounded below on s k (if there exists one). To ensure good measurability behavior, this index k is chosen as the minimal suitable index. This function is used to write down a liminf in a measurable way, in Filter.HasBasis.liminf_eq_ciSup_ciInf and Filter.HasBasis.liminf_eq_ite.

                Equations
                Instances For
                  theorem Filter.HasBasis.liminf_eq_ciSup_ciInf {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} [Countable (Subtype p)] [Nonempty (Subtype p)] (hv : v.HasBasis p s) {f : ια} (hs : ∀ (j : Subtype p), (s j).Nonempty) (H : ∃ (j : Subtype p), BddBelow (Set.range fun (i : (s j)) => f i)) :
                  liminf f v = ⨆ (j : Subtype p), ⨅ (i : (s (liminf_reparam f s p j))), f i

                  Writing a liminf as a supremum of infimum, in a (possibly non-complete) conditionally complete linear order. A reparametrization trick is needed to avoid taking the infimum of sets which are not bounded below.

                  theorem Filter.HasBasis.liminf_eq_ite {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} [Countable (Subtype p)] [Nonempty (Subtype p)] (hv : v.HasBasis p s) (f : ια) :
                  liminf f v = if ∃ (j : Subtype p), s j = then sSup Set.univ else if ∀ (j : Subtype p), ¬BddBelow (Set.range fun (i : (s j)) => f i) then sSup else ⨆ (j : Subtype p), ⨅ (i : (s (liminf_reparam f s p j))), f i

                  Writing a liminf as a supremum of infimum, in a (possibly non-complete) conditionally complete linear order. A reparametrization trick is needed to avoid taking the infimum of sets which are not bounded below.

                  noncomputable def Filter.limsup_reparam {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] (f : ια) (s : ι'Set ι) (p : ι'Prop) [Countable (Subtype p)] [Nonempty (Subtype p)] (j : Subtype p) :

                  Given an indexed family of sets s j and a function f, then limsup_reparam j is equal to j if f is bounded above on s j, and otherwise to some index k such that f is bounded above on s k (if there exists one). To ensure good measurability behavior, this index k is chosen as the minimal suitable index. This function is used to write down a limsup in a measurable way, in Filter.HasBasis.limsup_eq_ciInf_ciSup and Filter.HasBasis.limsup_eq_ite.

                  Equations
                  Instances For
                    theorem Filter.HasBasis.limsup_eq_ciInf_ciSup {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} [Countable (Subtype p)] [Nonempty (Subtype p)] (hv : v.HasBasis p s) {f : ια} (hs : ∀ (j : Subtype p), (s j).Nonempty) (H : ∃ (j : Subtype p), BddAbove (Set.range fun (i : (s j)) => f i)) :
                    limsup f v = ⨅ (j : Subtype p), ⨆ (i : (s (limsup_reparam f s p j))), f i

                    Writing a limsup as an infimum of supremum, in a (possibly non-complete) conditionally complete linear order. A reparametrization trick is needed to avoid taking the supremum of sets which are not bounded above.

                    theorem Filter.HasBasis.limsup_eq_ite {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [ConditionallyCompleteLinearOrder α] {v : Filter ι} {p : ι'Prop} {s : ι'Set ι} [Countable (Subtype p)] [Nonempty (Subtype p)] (hv : v.HasBasis p s) (f : ια) :
                    limsup f v = if ∃ (j : Subtype p), s j = then sInf Set.univ else if ∀ (j : Subtype p), ¬BddAbove (Set.range fun (i : (s j)) => f i) then sInf else ⨅ (j : Subtype p), ⨆ (i : (s (limsup_reparam f s p j))), f i

                    Writing a limsup as an infimum of supremum, in a (possibly non-complete) conditionally complete linear order. A reparametrization trick is needed to avoid taking the supremum of sets which are not bounded below.

                    theorem Monotone.isBoundedUnder_le_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Nonempty β] [LinearOrder β] [Preorder γ] [NoMaxOrder γ] {g : βγ} {f : αβ} {l : Filter α} (hg : Monotone g) (hg' : Filter.Tendsto g Filter.atTop Filter.atTop) :
                    Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) l (g f) Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
                    theorem Monotone.isBoundedUnder_ge_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Nonempty β] [LinearOrder β] [Preorder γ] [NoMinOrder γ] {g : βγ} {f : αβ} {l : Filter α} (hg : Monotone g) (hg' : Filter.Tendsto g Filter.atBot Filter.atBot) :
                    Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) l (g f) Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
                    theorem Antitone.isBoundedUnder_le_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Nonempty β] [LinearOrder β] [Preorder γ] [NoMaxOrder γ] {g : βγ} {f : αβ} {l : Filter α} (hg : Antitone g) (hg' : Filter.Tendsto g Filter.atBot Filter.atTop) :
                    Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) l (g f) Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
                    theorem Antitone.isBoundedUnder_ge_comp_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Nonempty β] [LinearOrder β] [Preorder γ] [NoMinOrder γ] {g : βγ} {f : αβ} {l : Filter α} (hg : Antitone g) (hg' : Filter.Tendsto g Filter.atTop Filter.atBot) :
                    Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) l (g f) Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) l f
                    theorem GaloisConnection.l_limsup_le {α : Type u_1} {β : Type u_2} {γ : Type u_3} [ConditionallyCompleteLattice β] [ConditionallyCompleteLattice γ] {f : Filter α} {v : αβ} {l : βγ} {u : γβ} (gc : GaloisConnection l u) (hlv : Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) f fun (x : α) => l (v x) := by isBoundedDefault) (hv_co : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) :
                    l (Filter.limsup v f) Filter.limsup (fun (x : α) => l (v x)) f
                    theorem OrderIso.limsup_apply {α : Type u_1} {β : Type u_2} {γ : Type u_6} [ConditionallyCompleteLattice β] [ConditionallyCompleteLattice γ] {f : Filter α} {u : αβ} (g : β ≃o γ) (hu : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hu_co : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hgu : Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) f fun (x : α) => g (u x) := by isBoundedDefault) (hgu_co : Filter.IsCoboundedUnder (fun (x1 x2 : γ) => x1 x2) f fun (x : α) => g (u x) := by isBoundedDefault) :
                    g (Filter.limsup u f) = Filter.limsup (fun (x : α) => g (u x)) f
                    theorem OrderIso.liminf_apply {α : Type u_1} {β : Type u_2} {γ : Type u_6} [ConditionallyCompleteLattice β] [ConditionallyCompleteLattice γ] {f : Filter α} {u : αβ} (g : β ≃o γ) (hu : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hu_co : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (hgu : Filter.IsBoundedUnder (fun (x1 x2 : γ) => x1 x2) f fun (x : α) => g (u x) := by isBoundedDefault) (hgu_co : Filter.IsCoboundedUnder (fun (x1 x2 : γ) => x1 x2) f fun (x : α) => g (u x) := by isBoundedDefault) :
                    g (Filter.liminf u f) = Filter.liminf (fun (x : α) => g (u x)) f
                    theorem isCoboundedUnder_le_max {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : Filter α} {u v : αβ} (h : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f v) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => u a v a
                    theorem limsup_max {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u v : αβ} (h₁ : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) (h₃ : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₄ : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) :
                    Filter.limsup (fun (a : α) => u a v a) f = Filter.limsup u f Filter.limsup v f
                    theorem liminf_min {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder β] {f : Filter α} {u v : αβ} (h₁ : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₂ : Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) (h₃ : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f u := by isBoundedDefault) (h₄ : Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f v := by isBoundedDefault) :
                    Filter.liminf (fun (a : α) => u a v a) f = Filter.liminf u f Filter.liminf v f
                    theorem isBoundedUnder_le_finset_sup' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] [Nonempty β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.sup' hs fun (i : ι) => F i a
                    theorem isCoboundedUnder_le_finset_sup' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.sup' hs fun (i : ι) => F i a
                    theorem isBoundedUnder_le_finset_sup {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] [OrderBot β] {f : Filter α} {F : ιαβ} {s : Finset ι} (h : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.sup fun (i : ι) => F i a
                    theorem isBoundedUnder_ge_finset_inf' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] [Nonempty β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.inf' hs fun (i : ι) => F i a
                    theorem isCoboundedUnder_ge_finset_inf' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.inf' hs fun (i : ι) => F i a
                    theorem isBoundedUnder_ge_finset_inf {α : Type u_1} {β : Type u_2} {ι : Type u_4} [LinearOrder β] [OrderTop β] {f : Filter α} {F : ιαβ} {s : Finset ι} (h : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i)) :
                    Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f fun (a : α) => s.inf fun (i : ι) => F i a
                    theorem limsup_finset_sup' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [ConditionallyCompleteLinearOrder β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h₁ : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) (h₂ : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) :
                    Filter.limsup (fun (a : α) => s.sup' hs fun (i : ι) => F i a) f = s.sup' hs fun (i : ι) => Filter.limsup (F i) f
                    theorem limsup_finset_sup {α : Type u_1} {β : Type u_2} {ι : Type u_4} [ConditionallyCompleteLinearOrder β] [OrderBot β] {f : Filter α} {F : ιαβ} {s : Finset ι} (h₁ : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) (h₂ : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) :
                    Filter.limsup (fun (a : α) => s.sup fun (i : ι) => F i a) f = s.sup fun (i : ι) => Filter.limsup (F i) f
                    theorem liminf_finset_inf' {α : Type u_1} {β : Type u_2} {ι : Type u_4} [ConditionallyCompleteLinearOrder β] {f : Filter α} {F : ιαβ} {s : Finset ι} (hs : s.Nonempty) (h₁ : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) (h₂ : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) :
                    Filter.liminf (fun (a : α) => s.inf' hs fun (i : ι) => F i a) f = s.inf' hs fun (i : ι) => Filter.liminf (F i) f
                    theorem liminf_finset_inf {α : Type u_1} {β : Type u_2} {ι : Type u_4} [ConditionallyCompleteLinearOrder β] [OrderTop β] {f : Filter α} {F : ιαβ} {s : Finset ι} (h₁ : is, Filter.IsCoboundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) (h₂ : is, Filter.IsBoundedUnder (fun (x1 x2 : β) => x1 x2) f (F i) := by exact fun _ _ ↦ by isBoundedDefault) :
                    Filter.liminf (fun (a : α) => s.inf fun (i : ι) => F i a) f = s.inf fun (i : ι) => Filter.liminf (F i) f
                    theorem Monotone.frequently_ge_map_of_frequently_ge {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_incr : Monotone f) {l : R} (freq_ge : ∃ᶠ (x : R) in F, l x) :
                    ∃ᶠ (x' : S) in Filter.map f F, f l x'
                    theorem Monotone.frequently_le_map_of_frequently_le {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_incr : Monotone f) {u : R} (freq_le : ∃ᶠ (x : R) in F, x u) :
                    ∃ᶠ (y : S) in Filter.map f F, y f u
                    theorem Antitone.frequently_le_map_of_frequently_ge {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_decr : Antitone f) {l : R} (frbdd : ∃ᶠ (x : R) in F, l x) :
                    ∃ᶠ (y : S) in Filter.map f F, y f l
                    theorem Antitone.frequently_ge_map_of_frequently_le {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_decr : Antitone f) {u : R} (frbdd : ∃ᶠ (x : R) in F, x u) :
                    ∃ᶠ (y : S) in Filter.map f F, f u y
                    theorem Monotone.isCoboundedUnder_le_of_isCobounded {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_incr : Monotone f) [F.NeBot] (cobdd : Filter.IsCobounded (fun (x1 x2 : R) => x1 x2) F) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : S) => x1 x2) F f
                    theorem Monotone.isCoboundedUnder_ge_of_isCobounded {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_incr : Monotone f) [F.NeBot] (cobdd : Filter.IsCobounded (fun (x1 x2 : R) => x1 x2) F) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : S) => x1 x2) F f
                    theorem Antitone.isCoboundedUnder_le_of_isCobounded {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_decr : Antitone f) [F.NeBot] (cobdd : Filter.IsCobounded (fun (x1 x2 : R) => x1 x2) F) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : S) => x1 x2) F f
                    theorem Antitone.isCoboundedUnder_ge_of_isCobounded {R : Type u_6} {S : Type u_7} {F : Filter R} [LinearOrder R] [LinearOrder S] {f : RS} (f_decr : Antitone f) [F.NeBot] (cobdd : Filter.IsCobounded (fun (x1 x2 : R) => x1 x2) F) :
                    Filter.IsCoboundedUnder (fun (x1 x2 : S) => x1 x2) F f