Pointwise order on finitely supported functions #
This file lifts order structures on M
to ι →₀ M
.
instance
Finsupp.partialorder
{ι : Type u_1}
{M : Type u_2}
[Zero M]
[PartialOrder M]
:
PartialOrder (ι →₀ M)
Equations
- Finsupp.partialorder = { toPreorder := Finsupp.preorder, le_antisymm := ⋯ }
instance
Finsupp.semilatticeInf
{ι : Type u_1}
{M : Type u_2}
[Zero M]
[SemilatticeInf M]
:
SemilatticeInf (ι →₀ M)
Equations
- Finsupp.semilatticeInf = { toPartialOrder := Finsupp.partialorder, inf := Finsupp.zipWith (fun (x1 x2 : M) => x1 ⊓ x2) ⋯, inf_le_left := ⋯, inf_le_right := ⋯, le_inf := ⋯ }
@[simp]
theorem
Finsupp.inf_apply
{ι : Type u_1}
{M : Type u_2}
[Zero M]
[SemilatticeInf M]
(f g : ι →₀ M)
(i : ι)
:
instance
Finsupp.semilatticeSup
{ι : Type u_1}
{M : Type u_2}
[Zero M]
[SemilatticeSup M]
:
SemilatticeSup (ι →₀ M)
Equations
- Finsupp.semilatticeSup = { toPartialOrder := Finsupp.partialorder, sup := Finsupp.zipWith (fun (x1 x2 : M) => x1 ⊔ x2) ⋯, le_sup_left := ⋯, le_sup_right := ⋯, sup_le := ⋯ }
@[simp]
theorem
Finsupp.sup_apply
{ι : Type u_1}
{M : Type u_2}
[Zero M]
[SemilatticeSup M]
(f g : ι →₀ M)
(i : ι)
: