The order on Prop
#
Instances on Prop
such as DistribLattice
, BoundedOrder
, LinearOrder
.
Propositions form a distributive lattice.
Propositions form a bounded order.
Equations
- «Prop».instBoundedOrder = BoundedOrder.mk
Equations
Equations
theorem
Pi.disjoint_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → PartialOrder (α' i)]
[(i : ι) → OrderBot (α' i)]
{f g : (i : ι) → α' i}
:
theorem
Pi.codisjoint_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → PartialOrder (α' i)]
[(i : ι) → OrderTop (α' i)]
{f g : (i : ι) → α' i}
:
Codisjoint f g ↔ ∀ (i : ι), Codisjoint (f i) (g i)
theorem
Pi.isCompl_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → PartialOrder (α' i)]
[(i : ι) → BoundedOrder (α' i)]
{f g : (i : ι) → α' i}
: