Documentation

Mathlib.Probability.Distributions.Pareto

Pareto distributions over ℝ #

Define the Pareto measure over the reals.

Main definitions #

noncomputable def ProbabilityTheory.paretoPDFReal (t r x : ) :

The pdf of the Pareto distribution depending on its scale t and rate r.

Equations
Instances For
    noncomputable def ProbabilityTheory.paretoPDF (t r x : ) :

    The pdf of the Pareto distribution, as a function valued in ℝ≥0∞.

    Equations
    Instances For
      theorem ProbabilityTheory.paretoPDF_eq (t r x : ) :
      ProbabilityTheory.paretoPDF t r x = ENNReal.ofReal (if t x then r * t ^ r * x ^ (-(r + 1)) else 0)
      theorem ProbabilityTheory.paretoPDF_of_le {t r x : } (hx : t x) :
      theorem ProbabilityTheory.lintegral_paretoPDF_of_le {t r x : } (hx : x t) :
      ∫⁻ (y : ) in Set.Iio x, ProbabilityTheory.paretoPDF t r y = 0

      The Lebesgue integral of the Pareto pdf over reals ≤ t equals 0.

      theorem ProbabilityTheory.paretoPDFReal_pos {t r x : } (ht : 0 < t) (hr : 0 < r) (hx : t x) :

      The Pareto pdf is positive for all reals >= t.

      theorem ProbabilityTheory.paretoPDFReal_nonneg {t r : } (ht : 0 t) (hr : 0 r) (x : ) :

      The Pareto pdf is nonnegative.

      @[simp]
      theorem ProbabilityTheory.lintegral_paretoPDF_eq_one {t r : } (ht : 0 < t) (hr : 0 < r) :
      ∫⁻ (x : ), ProbabilityTheory.paretoPDF t r x = 1

      The pdf of the Pareto distribution integrates to 1.

      Measure defined by the Pareto distribution.

      Equations
      Instances For

        CDF of the Pareto distribution equals the integral of the PDF.

        theorem ProbabilityTheory.paretoCDFReal_eq_lintegral {t r : } (ht : 0 < t) (hr : 0 < r) (x : ) :