Documentation

Mathlib.RepresentationTheory.Action.Limits

Categorical properties of Action V G #

We show:

F : C ⥤ Action V G preserves the limit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves limits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves the colimit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves colimits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

Equations
  • Action.instZeroHom = { zero := { hom := 0, comm := } }
Equations
  • =
instance Action.instAddHom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X Y : Action V G} :
Add (X Y)
Equations
  • Action.instAddHom = { add := fun (f g : X Y) => { hom := f.hom + g.hom, comm := } }
instance Action.instNegHom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X Y : Action V G} :
Neg (X Y)
Equations
  • Action.instNegHom = { neg := fun (f : X Y) => { hom := -f.hom, comm := } }
Equations
  • Action.instPreadditive = { homGroup := fun (X Y : Action V G) => AddCommGroup.mk , add_comp := , comp_add := }
Equations
  • =
@[simp]
theorem Action.neg_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X Y : Action V G} (f : X Y) :
(-f).hom = -f.hom
@[simp]
theorem Action.add_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X Y : Action V G} (f g : X Y) :
(f + g).hom = f.hom + g.hom
@[simp]
theorem Action.sum_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X Y : Action V G} {ι : Type u_1} (f : ι(X Y)) (s : Finset ι) :
(s.sum f).hom = is, (f i).hom
Equations
  • Action.instLinear = { homModule := fun (X Y : Action V G) => Module.mk , smul_comp := , comp_smul := }
@[simp]
theorem Action.smul_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {R : Type u_1} [Semiring R] [CategoryTheory.Linear R V] {X Y : Action V G} (r : R) (f : X Y) :
(r f).hom = r f.hom
instance Action.res_additive {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {H : MonCat} (f : G H) :
(Action.res V f).Additive
Equations
  • =

Auxiliary construction for the Abelian (Action V G) instance.

Equations
Instances For
    Equations
    Equations
    • =