Documentation

Mathlib.RingTheory.AdicCompletion.Basic

Completion of a module with respect to an ideal. #

In this file we define the notions of Hausdorff, precomplete, and complete for an R-module M with respect to an ideal I:

Main definitions #

class IsHausdorff {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

A module M is Hausdorff with respect to an ideal I if ⋂ I^n M = 0.

Instances
    class IsPrecomplete {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

    A module M is precomplete with respect to an ideal I if every Cauchy sequence converges.

    Instances
      class IsAdicComplete {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] extends IsHausdorff I M, IsPrecomplete I M :

      A module M is I-adically complete if it is Hausdorff and precomplete.

      Instances
        theorem isAdicComplete_iff {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
        theorem IsHausdorff.haus {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] :
        IsHausdorff I M∀ (x : M), (∀ (n : ), x 0 [SMOD I ^ n ])x = 0
        theorem isHausdorff_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] :
        IsHausdorff I M ∀ (x : M), (∀ (n : ), x 0 [SMOD I ^ n ])x = 0
        theorem IsHausdorff.eq_iff_smodEq {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] [IsHausdorff I M] {x y : M} :
        x = y ∀ (n : ), x y [SMOD I ^ n ]
        theorem IsHausdorff.funext {R : Type u_1} [CommRing R] (I : Ideal R) {N : Type u_5} [AddCommGroup N] [Module R N] {M : Type u_6} [IsHausdorff I N] {f g : MN} (h : ∀ (n : ) (m : M), Submodule.Quotient.mk (f m) = Submodule.Quotient.mk (g m)) :
        f = g
        theorem IsHausdorff.StrictMono.funext {R : Type u_1} [CommRing R] (I : Ideal R) {N : Type u_5} [AddCommGroup N] [Module R N] {M : Type u_6} [IsHausdorff I N] {f g : MN} {a : } (ha : StrictMono a) (h : ∀ (n : ) (m : M), Submodule.Quotient.mk (f m) = Submodule.Quotient.mk (g m)) :
        f = g
        theorem IsHausdorff.funext' {R : Type u_6} {S : Type u_7} [CommRing S] (I : Ideal S) [IsHausdorff I S] {f g : RS} (h : ∀ (n : ) (r : R), (Ideal.Quotient.mk (I ^ n)) (f r) = (Ideal.Quotient.mk (I ^ n)) (g r)) :
        f = g

        A variant of IsHausdorff.funext, where the target is a ring instead of a module.

        theorem IsHausdorff.StrictMono.funext' {R : Type u_6} {S : Type u_7} [CommRing S] (I : Ideal S) [IsHausdorff I S] {f g : RS} {a : } (ha : StrictMono a) (h : ∀ (n : ) (r : R), (Ideal.Quotient.mk (I ^ a n)) (f r) = (Ideal.Quotient.mk (I ^ a n)) (g r)) :
        f = g

        A variant of IsHausdorff.StrictMono.funext, where the target is a ring instead of a module.

        theorem IsPrecomplete.prec {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] :
        IsPrecomplete I M∀ {f : M}, (∀ {m n : }, m nf m f n [SMOD I ^ m ])∃ (L : M), ∀ (n : ), f n L [SMOD I ^ n ]
        theorem isPrecomplete_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] :
        IsPrecomplete I M ∀ (f : M), (∀ {m n : }, m nf m f n [SMOD I ^ m ])∃ (L : M), ∀ (n : ), f n L [SMOD I ^ n ]
        @[reducible, inline]
        noncomputable abbrev Hausdorffification {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
        Type u_4

        The Hausdorffification of a module with respect to an ideal.

        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev AdicCompletion.transitionMap {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] {m n : } (hmn : m n) :
          M I ^ n →ₗ[R] M I ^ m

          The canonical linear map M ⧸ (I ^ n • ⊤) →ₗ[R] M ⧸ (I ^ m • ⊤) for m ≤ n used to define AdicCompletion.

          Equations
          Instances For
            noncomputable def AdicCompletion {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
            Type u_4

            The completion of a module with respect to an ideal.

            This is Hausdorff but not necessarily complete: a classical sufficient condition for completeness is that M be finitely generated [Stacks, 0G1Q].

            Equations
            Instances For
              instance IsHausdorff.bot {R : Type u_1} [CommRing R] (M : Type u_4) [AddCommGroup M] [Module R M] :
              theorem IsHausdorff.subsingleton {R : Type u_1} [CommRing R] {M : Type u_4} [AddCommGroup M] [Module R M] (h : IsHausdorff M) :
              @[instance 100]
              instance IsHausdorff.of_subsingleton {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [Subsingleton M] :
              theorem IsHausdorff.iInf_pow_smul {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (h : IsHausdorff I M) :
              ⨅ (n : ), I ^ n =
              noncomputable def Hausdorffification.of {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

              The canonical linear map to the Hausdorffification.

              Equations
              Instances For
                theorem Hausdorffification.induction_on {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {C : Hausdorffification I MProp} (x : Hausdorffification I M) (ih : ∀ (x : M), C ((of I M) x)) :
                C x
                noncomputable def Hausdorffification.lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [h : IsHausdorff I N] (f : M →ₗ[R] N) :

                Universal property of Hausdorffification: any linear map to a Hausdorff module extends to a unique map from the Hausdorffification.

                Equations
                Instances For
                  theorem Hausdorffification.lift_of {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [h : IsHausdorff I N] (f : M →ₗ[R] N) (x : M) :
                  (lift I f) ((of I M) x) = f x
                  theorem Hausdorffification.lift_comp_of {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [h : IsHausdorff I N] (f : M →ₗ[R] N) :
                  lift I f ∘ₗ of I M = f
                  theorem Hausdorffification.lift_eq {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [h : IsHausdorff I N] (f : M →ₗ[R] N) (g : Hausdorffification I M →ₗ[R] N) (hg : g ∘ₗ of I M = f) :
                  g = lift I f

                  Uniqueness of lift.

                  instance IsPrecomplete.bot {R : Type u_1} [CommRing R] (M : Type u_4) [AddCommGroup M] [Module R M] :
                  instance IsPrecomplete.top {R : Type u_1} [CommRing R] (M : Type u_4) [AddCommGroup M] [Module R M] :
                  @[instance 100]
                  instance IsPrecomplete.of_subsingleton {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [Subsingleton M] :
                  noncomputable def AdicCompletion.submodule {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                  Submodule R ((n : ) → M I ^ n )

                  AdicCompletion is the submodule of compatible families in ∀ n : ℕ, M ⧸ (I ^ n • ⊤).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable instance AdicCompletion.instZero {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    Equations
                    noncomputable instance AdicCompletion.instAdd {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    Equations
                    noncomputable instance AdicCompletion.instNeg {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    Equations
                    noncomputable instance AdicCompletion.instSub {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    Equations
                    noncomputable instance AdicCompletion.instSMul {R : Type u_1} {S : Type u_2} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [SMul S R] [SMul S M] [IsScalarTower S R M] :
                    Equations
                    @[simp]
                    theorem AdicCompletion.val_zero {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    0 = 0
                    theorem AdicCompletion.val_zero_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                    0 n = 0
                    @[simp]
                    theorem AdicCompletion.val_add {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f g : AdicCompletion I M) :
                    ↑(f + g) = f + g
                    @[simp]
                    theorem AdicCompletion.val_sub {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f g : AdicCompletion I M) :
                    ↑(f - g) = f - g
                    @[simp]
                    theorem AdicCompletion.val_neg {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f : AdicCompletion I M) :
                    ↑(-f) = -f
                    theorem AdicCompletion.val_add_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f g : AdicCompletion I M) (n : ) :
                    ↑(f + g) n = f n + g n
                    theorem AdicCompletion.val_sub_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f g : AdicCompletion I M) (n : ) :
                    ↑(f - g) n = f n - g n
                    theorem AdicCompletion.val_neg_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (f : AdicCompletion I M) (n : ) :
                    ↑(-f) n = -f n
                    theorem AdicCompletion.val_smul {R : Type u_1} {S : Type u_2} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (s : S) (f : AdicCompletion I M) :
                    ↑(s f) = s f
                    theorem AdicCompletion.val_smul_apply {R : Type u_1} {S : Type u_2} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (s : S) (f : AdicCompletion I M) (n : ) :
                    ↑(s f) n = s f n
                    theorem AdicCompletion.ext {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {x y : AdicCompletion I M} (h : ∀ (n : ), x n = y n) :
                    x = y
                    theorem AdicCompletion.ext_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {x y : AdicCompletion I M} :
                    x = y ∀ (n : ), x n = y n
                    noncomputable instance AdicCompletion.instAddCommGroup {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    Equations
                    noncomputable instance AdicCompletion.instModuleOfIsScalarTower {R : Type u_1} {S : Type u_2} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [Semiring S] [SMul S R] [Module S M] [IsScalarTower S R M] :
                    Equations
                    instance AdicCompletion.instIsScalarTower {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [SMul S T] [SMul S R] [SMul T R] [SMul S M] [SMul T M] [IsScalarTower S R M] [IsScalarTower T R M] [IsScalarTower S T M] :
                    instance AdicCompletion.instSMulCommClass {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [SMul S R] [SMul T R] [SMul S M] [SMul T M] [IsScalarTower S R M] [IsScalarTower T R M] [SMulCommClass S T M] :
                    instance AdicCompletion.instIsCentralScalar {R : Type u_1} {S : Type u_2} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [SMul S R] [SMul Sᵐᵒᵖ R] [SMul S M] [SMul Sᵐᵒᵖ M] [IsScalarTower S R M] [IsScalarTower Sᵐᵒᵖ R M] [IsCentralScalar S M] :
                    noncomputable def AdicCompletion.incl {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                    AdicCompletion I M →ₗ[R] (n : ) → M I ^ n

                    The canonical inclusion from the completion to the product.

                    Equations
                    Instances For
                      @[simp]
                      theorem AdicCompletion.incl_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (x : AdicCompletion I M) (n : ) :
                      (incl I M) x n = x n
                      @[simp]
                      theorem AdicCompletion.val_sum {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {ι : Type u_6} (s : Finset ι) (f : ιAdicCompletion I M) :
                      (∑ is, f i) = is, (f i)
                      theorem AdicCompletion.val_sum_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {ι : Type u_6} (s : Finset ι) (f : ιAdicCompletion I M) (n : ) :
                      (∑ is, f i) n = is, (f i) n
                      noncomputable def AdicCompletion.of {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

                      The canonical linear map to the completion.

                      Equations
                      Instances For
                        @[simp]
                        theorem AdicCompletion.of_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (x : M) (n : ) :
                        ((of I M) x) n = (I ^ n ).mkQ x
                        noncomputable def AdicCompletion.eval {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :

                        Linearly evaluating a sequence in the completion at a given input.

                        Equations
                        Instances For
                          @[simp]
                          theorem AdicCompletion.coe_eval {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                          (eval I M n) = fun (f : AdicCompletion I M) => f n
                          theorem AdicCompletion.eval_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) (f : AdicCompletion I M) :
                          (eval I M n) f = f n
                          theorem AdicCompletion.eval_of {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) (x : M) :
                          (eval I M n) ((of I M) x) = (I ^ n ).mkQ x
                          @[simp]
                          theorem AdicCompletion.eval_comp_of {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                          eval I M n ∘ₗ of I M = (I ^ n ).mkQ
                          theorem AdicCompletion.eval_surjective {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                          @[simp]
                          theorem AdicCompletion.range_eval {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                          instance AdicCompletion.instIsHausdorff {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                          @[simp]
                          theorem AdicCompletion.transitionMap_comp_eval_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] {m n : } (hmn : m n) (x : AdicCompletion I M) :
                          (transitionMap I M hmn) (x n) = x m
                          @[simp]
                          theorem AdicCompletion.transitionMap_comp_eval {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] {m n : } (hmn : m n) :
                          transitionMap I M hmn ∘ₗ eval I M n = eval I M m
                          noncomputable def AdicCompletion.IsAdicCauchy {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : M) :

                          A sequence ℕ → M is an I-adic Cauchy sequence if for every m ≤ n, f m ≡ f n modulo I ^ m • ⊤.

                          Equations
                          Instances For
                            noncomputable def AdicCompletion.AdicCauchySequence {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                            Type u_4

                            The type of I-adic Cauchy sequences.

                            Equations
                            Instances For
                              noncomputable def AdicCompletion.AdicCauchySequence.submodule {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                              Submodule R (M)

                              The type of I-adic Cauchy sequences is a submodule of the product ℕ → M.

                              Equations
                              Instances For
                                noncomputable instance AdicCompletion.AdicCauchySequence.instZero {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instAdd {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instNeg {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instSub {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instSMulNat {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instSMulInt {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instSMul {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                noncomputable instance AdicCompletion.AdicCauchySequence.instModule {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :
                                Equations
                                @[simp]
                                theorem AdicCompletion.AdicCauchySequence.zero_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (n : ) :
                                0 n = 0
                                @[simp]
                                theorem AdicCompletion.AdicCauchySequence.add_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (n : ) (f g : AdicCauchySequence I M) :
                                ↑(f + g) n = f n + g n
                                @[simp]
                                theorem AdicCompletion.AdicCauchySequence.sub_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (n : ) (f g : AdicCauchySequence I M) :
                                ↑(f - g) n = f n - g n
                                @[simp]
                                theorem AdicCompletion.AdicCauchySequence.smul_apply {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] (n : ) (r : R) (f : AdicCauchySequence I M) :
                                ↑(r f) n = r f n
                                theorem AdicCompletion.AdicCauchySequence.ext {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {x y : AdicCauchySequence I M} (h : ∀ (n : ), x n = y n) :
                                x = y
                                theorem AdicCompletion.AdicCauchySequence.ext_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {x y : AdicCauchySequence I M} :
                                x = y ∀ (n : ), x n = y n
                                theorem AdicCompletion.AdicCauchySequence.mk_eq_mk {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {m n : } (hmn : m n) (f : AdicCauchySequence I M) :

                                The defining property of an adic Cauchy sequence unwrapped.

                                theorem AdicCompletion.isAdicCauchy_iff {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : M) :
                                IsAdicCauchy I M f ∀ (n : ), f n f (n + 1) [SMOD I ^ n ]

                                The I-adic Cauchy condition can be checked on successive n.

                                noncomputable def AdicCompletion.AdicCauchySequence.mk {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : M) (h : ∀ (n : ), f n f (n + 1) [SMOD I ^ n ]) :

                                Construct I-adic Cauchy sequence from sequence satisfying the successive Cauchy condition.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem AdicCompletion.AdicCauchySequence.mk_coe {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : M) (h : ∀ (n : ), f n f (n + 1) [SMOD I ^ n ]) (a✝ : ) :
                                  (mk I M f h) a✝ = f a✝
                                  noncomputable def AdicCompletion.mk {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

                                  The canonical linear map from Cauchy sequences to the completion.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem AdicCompletion.mk_apply_coe {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : AdicCauchySequence I M) (n : ) :
                                    ((mk I M) f) n = (I ^ n ).mkQ (f n)
                                    theorem AdicCompletion.mk_zero_of {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] (f : AdicCauchySequence I M) (h : ∃ (k : ), nk, mn, ln, f m I ^ l ) :
                                    (mk I M) f = 0

                                    Criterion for checking that an adic Cauchy sequence is mapped to zero in the adic completion.

                                    theorem AdicCompletion.mk_surjective {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] :

                                    Every element in the adic completion is represented by a Cauchy sequence.

                                    theorem AdicCompletion.induction_on {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] {p : AdicCompletion I MProp} (x : AdicCompletion I M) (h : ∀ (f : AdicCauchySequence I M), p ((mk I M) f)) :
                                    p x

                                    To show a statement about an element of adicCompletion I M, it suffices to check it on Cauchy sequences.

                                    noncomputable def AdicCompletion.lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), transitionMap I N hle ∘ₗ f n = f m) :

                                    Lift a compatible family of linear maps M →ₗ[R] N ⧸ (I ^ n • ⊤ : Submodule R N) to the I-adic completion of M.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem AdicCompletion.eval_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), transitionMap I N hle ∘ₗ f n = f m) (n : ) :
                                      eval I N n ∘ₗ lift I f = f n
                                      @[simp]
                                      theorem AdicCompletion.eval_lift_apply {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), transitionMap I N hle ∘ₗ f n = f m) (n : ) (x : M) :
                                      ((lift I f ) x) n = (f n) x
                                      theorem AdicCompletion.of_injective_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] :
                                      theorem AdicCompletion.of_injective {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [IsHausdorff I M] :
                                      @[simp]
                                      theorem AdicCompletion.of_inj {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] [IsHausdorff I M] {a b : M} :
                                      (of I M) a = (of I M) b a = b
                                      theorem AdicCompletion.of_surjective {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [IsPrecomplete I M] :
                                      theorem AdicCompletion.of_bijective {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [IsAdicComplete I M] :
                                      noncomputable def AdicCompletion.ofLinearEquiv {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [IsAdicComplete I M] :

                                      When M is I-adic complete, the canonical map from M to its I-adic completion is a linear equivalence.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem AdicCompletion.ofLinearEquiv_apply {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [IsAdicComplete I M] (a✝ : M) :
                                        (ofLinearEquiv I M) a✝ = (of I M) a✝
                                        @[simp]
                                        theorem AdicCompletion.ofLinearEquiv_symm_of {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] [IsAdicComplete I M] (x : M) :
                                        (ofLinearEquiv I M).symm ((of I M) x) = x
                                        @[simp]
                                        theorem AdicCompletion.of_ofLinearEquiv_symm {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] [IsAdicComplete I M] (x : AdicCompletion I M) :
                                        (of I M) ((ofLinearEquiv I M).symm x) = x
                                        noncomputable def IsAdicComplete.lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) :

                                        Universal property of IsAdicComplete. The lift linear map lift I f h : M →ₗ[R] N of a sequence of compatible linear maps f n : M →ₗ[R] N ⧸ (I ^ n • ⊤).

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem IsAdicComplete.of_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) (x : M) :
                                          (AdicCompletion.of I N) ((lift I f ) x) = (AdicCompletion.lift I f ) x
                                          @[simp]
                                          theorem IsAdicComplete.of_comp_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] (f : (n : ) → M →ₗ[R] N I ^ n ) (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) :
                                          @[simp]
                                          theorem IsAdicComplete.mk_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] {f : (n : ) → M →ₗ[R] N I ^ n } (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) (n : ) (x : M) :
                                          Submodule.Quotient.mk ((lift I f ) x) = (f n) x

                                          The composition of lift linear map lift I f h : M →ₗ[R] N with the canonical projection N → N ⧸ (I ^ n • ⊤) is f n .

                                          @[simp]
                                          theorem IsAdicComplete.mkQ_comp_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] {f : (n : ) → M →ₗ[R] N I ^ n } (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) (n : ) :
                                          (I ^ n ).mkQ ∘ₗ lift I f = f n

                                          The composition of lift linear map lift I f h : M →ₗ[R] N with the canonical projection N →ₗ[R] N ⧸ (I ^ n • ⊤) is f n .

                                          theorem IsAdicComplete.eq_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] [IsAdicComplete I N] {f : (n : ) → M →ₗ[R] N I ^ n } (h : ∀ {m n : } (hle : m n), Submodule.factorPow I N hle ∘ₗ f n = f m) {F : M →ₗ[R] N} (hF : ∀ (n : ), (I ^ n ).mkQ ∘ₗ F = f n) :
                                          F = lift I f

                                          Uniqueness of the lift. Given a compatible family of linear maps f n : M →ₗ[R] N ⧸ (I ^ n • ⊤). If F : M →ₗ[R] N makes the following diagram commutes

                                            N
                                            | \
                                           F|  \ f n
                                            |   \
                                            v    v
                                            M --> M ⧸ (I ^ n • ⊤)
                                          

                                          Then it is the map IsAdicComplete.lift.

                                          noncomputable def IsAdicComplete.StrictMono.extend {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (n : ) :
                                          M →ₗ[R] N I ^ n

                                          Instead of providing all M →ₗ[R] N ⧸ (I ^ n • ⊤), one can just provide M →ₗ[R] N ⧸ (I ^ (a n) • ⊤) for a strictly increasing sequence a n to recover all M →ₗ[R] N ⧸ (I ^ n • ⊤).

                                          Equations
                                          Instances For
                                            theorem IsAdicComplete.StrictMono.factorPow_comp_eq_of_factorPow_comp_succ_eq {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) {m n : } (hle : m n) :
                                            Submodule.factorPow I N ∘ₗ f n = f m
                                            theorem IsAdicComplete.StrictMono.extend_eq {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) (n : ) :
                                            extend ha f (a n) = f n
                                            theorem IsAdicComplete.StrictMono.factorPow_comp_extend {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) {m n : } (hle : m n) :
                                            Submodule.factorPow I N hle ∘ₗ extend ha f n = extend ha f m
                                            noncomputable def IsAdicComplete.StrictMono.lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] :

                                            A variant of IsAdicComplete.lift. Only takes f n : M →ₗ[R] N ⧸ (I ^ (a n) • ⊤) from a strictly increasing sequence a n.

                                            Equations
                                            Instances For
                                              theorem IsAdicComplete.StrictMono.of_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] (x : M) :
                                              (AdicCompletion.of I N) ((lift I ha f ) x) = (AdicCompletion.lift I (extend ha f) ) x
                                              theorem IsAdicComplete.StrictMono.of_comp_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] :
                                              @[simp]
                                              theorem IsAdicComplete.StrictMono.mk_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] {n : } (x : M) :
                                              Submodule.Quotient.mk ((lift I ha f ) x) = (f n) x
                                              @[simp]
                                              theorem IsAdicComplete.StrictMono.mkQ_comp_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] {n : } :
                                              (I ^ a n ).mkQ ∘ₗ lift I ha f = f n
                                              theorem IsAdicComplete.StrictMono.eq_lift {R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_4} [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] {a : } (ha : StrictMono a) (f : (n : ) → M →ₗ[R] N I ^ a n ) (hf : ∀ {m : }, Submodule.factorPow I N ∘ₗ f (m + 1) = f m) [IsAdicComplete I N] {F : M →ₗ[R] N} (hF : ∀ (n : ), (I ^ a n ).mkQ ∘ₗ F = f n) :
                                              F = lift I ha f
                                              instance IsAdicComplete.bot {R : Type u_1} [CommRing R] (M : Type u_4) [AddCommGroup M] [Module R M] :
                                              @[instance 100]
                                              instance IsAdicComplete.of_subsingleton {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_4) [AddCommGroup M] [Module R M] [Subsingleton M] :