Adjoin one single element #
This file contains basic results on Algebra.adjoin, specifically on adjoining singletons.
Tags #
adjoin, algebra, ringhom
def
Algebra.RingHom.adjoinAlgebraMap
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
:
Ring homomorphism between A[b] and A[↑b].
Equations
- Algebra.RingHom.adjoinAlgebraMap b = (↑((AlgHom.restrictScalars A (Algebra.ofId B C)).comp (Algebra.adjoin A {b}).val)).codRestrict (Algebra.adjoin A {(algebraMap B C) b}) ⋯
Instances For
@[simp]
theorem
Algebra.RingHom.adjoin_algebraMap_apply
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
(x : ↥(adjoin A {b}))
:
theorem
Algebra.RingHom.adjoin_algebraMap_surjective
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
:
instance
Algebra.instSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
:
instance
Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
:
IsScalarTower (↥(adjoin A {b})) (↥(adjoin A {(algebraMap B C) b})) C
noncomputable def
Algebra.RingHom.adjoinAlgebraMapEquiv
{A : Type u_1}
{B : Type u_2}
{C : Type u_3}
[CommSemiring A]
[CommSemiring B]
[CommSemiring C]
[Algebra A B]
[Algebra B C]
[Algebra A C]
[IsScalarTower A B C]
(b : B)
[FaithfulSMul B C]
:
If the algebraMap injective then we have a Ring isomorphism between A[b] and A[↑b].