Documentation

Mathlib.RingTheory.Adjoin.Singleton

Adjoin one single element #

This file contains basic results on Algebra.adjoin, specifically on adjoining singletons.

Tags #

adjoin, algebra, ringhom

def Algebra.RingHom.adjoinAlgebraMap {A : Type u_1} {B : Type u_2} {C : Type u_3} [CommSemiring A] [CommSemiring B] [CommSemiring C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) :
(adjoin A {b}) →+* (adjoin A {(algebraMap B C) b})

Ring homomorphism between A[b] and A[↑b].

Equations
Instances For
    @[simp]
    theorem Algebra.RingHom.adjoin_algebraMap_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [CommSemiring A] [CommSemiring B] [CommSemiring C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) (x : (adjoin A {b})) :
    ((adjoinAlgebraMap b) x) = (algebraMap B C) x
    noncomputable def Algebra.RingHom.adjoinAlgebraMapEquiv {A : Type u_1} {B : Type u_2} {C : Type u_3} [CommSemiring A] [CommSemiring B] [CommSemiring C] [Algebra A B] [Algebra B C] [Algebra A C] [IsScalarTower A B C] (b : B) [FaithfulSMul B C] :
    (adjoin A {b}) ≃+* (adjoin A {(algebraMap B C) b})

    If the algebraMap injective then we have a Ring isomorphism between A[b] and A[↑b].

    Equations
    Instances For