Documentation

Mathlib.RingTheory.AlgebraicIndependent.Adjoin

Algebraic Independence #

This file concerns adjoining an algebraic independent family to a field.

Main definitions #

def AlgebraicIndependent.aevalEquivField {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :

Canonical isomorphism between rational function field and the intermediate field generated by algebraically independent elements.

Equations
Instances For
    @[simp]
    theorem AlgebraicIndependent.aevalEquivField_apply_coe {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (a : FractionRing (MvPolynomial ι F)) :
    (hx.aevalEquivField a) = (IsFractionRing.lift ) a
    theorem AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (a : MvPolynomial ι F) :
    (hx.aevalEquivField ((algebraMap (MvPolynomial ι F) (FractionRing (MvPolynomial ι F))) a)) = (MvPolynomial.aeval x) a
    def AlgebraicIndependent.reprField {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :

    The canonical map from the intermediate field generated by an algebraic independent family into the rational function field.

    Equations
    • hx.reprField = hx.aevalEquivField.symm
    Instances For
      @[simp]
      theorem AlgebraicIndependent.lift_reprField {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (p : (IntermediateField.adjoin F (Set.range x))) :
      (IsFractionRing.lift ) (hx.reprField p) = p
      theorem AlgebraicIndependent.liftAlgHom_comp_reprField {ι : Type u_1} {F : Type u_2} {E : Type u_3} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :