Chains of divisors #
The results in this file show that in the monoid Associates M
of a UniqueFactorizationMonoid
M
, an element a
is an n-th prime power iff its set of divisors is a strictly increasing chain
of length n + 1
, meaning that we can find a strictly increasing bijection between Fin (n + 1)
and the set of factors of a
.
Main results #
DivisorChain.exists_chain_of_prime_pow
: existence of a chain for prime powers.DivisorChain.is_prime_pow_of_has_chain
: elements that have a chain are prime powers.multiplicity_prime_eq_multiplicity_image_by_factor_orderIso
: if there is a monotone bijectiond
between the set of factors ofa : Associates M
and the set of factors ofb : Associates N
then for any primep ∣ a
,multiplicity p a = multiplicity (d p) b
.multiplicity_eq_multiplicity_factor_dvd_iso_of_mem_normalizedFactors
: if there is a bijection between the set of factors ofa : M
andb : N
then for any primep ∣ a
,multiplicity p a = multiplicity (d p) b
TODO #
- Create a structure for chains of divisors.
- Simplify proof of
mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors
usingmem_normalizedFactors_factor_order_iso_of_mem_normalizedFactors
or vice versa.
theorem
Associates.isAtom_iff
{M : Type u_1}
[CancelCommMonoidWithZero M]
{p : Associates M}
(h₁ : p ≠ 0)
:
IsAtom p ↔ Irreducible p
theorem
DivisorChain.exists_chain_of_prime_pow
{M : Type u_1}
[CancelCommMonoidWithZero M]
{p : Associates M}
{n : ℕ}
(hn : n ≠ 0)
(hp : Prime p)
:
∃ (c : Fin (n + 1) → Associates M),
c 1 = p ∧ StrictMono c ∧ ∀ {r : Associates M}, r ≤ p ^ n ↔ ∃ (i : Fin (n + 1)), r = c i
theorem
DivisorChain.element_of_chain_not_isUnit_of_index_ne_zero
{M : Type u_1}
[CancelCommMonoidWithZero M]
{n : ℕ}
{i : Fin (n + 1)}
(i_pos : i ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
:
theorem
DivisorChain.first_of_chain_isUnit
{M : Type u_1}
[CancelCommMonoidWithZero M]
{q : Associates M}
{n : ℕ}
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
:
IsUnit (c 0)
theorem
DivisorChain.second_of_chain_is_irreducible
{M : Type u_1}
[CancelCommMonoidWithZero M]
{q : Associates M}
{n : ℕ}
(hn : n ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
(hq : q ≠ 0)
:
Irreducible (c 1)
The second element of a chain is irreducible.
theorem
DivisorChain.eq_second_of_chain_of_prime_dvd
{M : Type u_1}
[CancelCommMonoidWithZero M]
{p q r : Associates M}
{n : ℕ}
(hn : n ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
(hp : Prime p)
(hr : r ∣ q)
(hp' : p ∣ r)
:
p = c 1
theorem
DivisorChain.card_subset_divisors_le_length_of_chain
{M : Type u_1}
[CancelCommMonoidWithZero M]
{q : Associates M}
{n : ℕ}
{c : Fin (n + 1) → Associates M}
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
{m : Finset (Associates M)}
(hm : ∀ r ∈ m, r ≤ q)
:
theorem
DivisorChain.element_of_chain_eq_pow_second_of_chain
{M : Type u_1}
[CancelCommMonoidWithZero M]
[UniqueFactorizationMonoid M]
{q r : Associates M}
{n : ℕ}
(hn : n ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
(hr : r ∣ q)
(hq : q ≠ 0)
:
theorem
DivisorChain.eq_pow_second_of_chain_of_has_chain
{M : Type u_1}
[CancelCommMonoidWithZero M]
[UniqueFactorizationMonoid M]
{q : Associates M}
{n : ℕ}
(hn : n ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
(hq : q ≠ 0)
:
theorem
DivisorChain.isPrimePow_of_has_chain
{M : Type u_1}
[CancelCommMonoidWithZero M]
[UniqueFactorizationMonoid M]
{q : Associates M}
{n : ℕ}
(hn : n ≠ 0)
{c : Fin (n + 1) → Associates M}
(h₁ : StrictMono c)
(h₂ : ∀ {r : Associates M}, r ≤ q ↔ ∃ (i : Fin (n + 1)), r = c i)
(hq : q ≠ 0)
:
theorem
factor_orderIso_map_one_eq_bot
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
{m : Associates M}
{n : Associates N}
(d : { l : Associates M // l ≤ m } ≃o { l : Associates N // l ≤ n })
:
↑(d ⟨1, ⋯⟩) = 1
theorem
coe_factor_orderIso_map_eq_one_iff
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
{m u : Associates M}
{n : Associates N}
(hu' : u ≤ m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
:
theorem
pow_image_of_prime_by_factor_orderIso_dvd
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[UniqueFactorizationMonoid N]
[UniqueFactorizationMonoid M]
{m p : Associates M}
{n : Associates N}
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
{s : ℕ}
(hs' : p ^ s ≤ m)
:
theorem
map_prime_of_factor_orderIso
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[UniqueFactorizationMonoid N]
[UniqueFactorizationMonoid M]
{m p : Associates M}
{n : Associates N}
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
:
Prime ↑(d ⟨p, ⋯⟩)
theorem
mem_normalizedFactors_factor_orderIso_of_mem_normalizedFactors
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[UniqueFactorizationMonoid N]
[UniqueFactorizationMonoid M]
{m p : Associates M}
{n : Associates N}
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
:
↑(d ⟨p, ⋯⟩) ∈ UniqueFactorizationMonoid.normalizedFactors n
theorem
emultiplicity_prime_le_emultiplicity_image_by_factor_orderIso
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[UniqueFactorizationMonoid N]
[UniqueFactorizationMonoid M]
{m p : Associates M}
{n : Associates N}
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
:
emultiplicity p m ≤ emultiplicity (↑(d ⟨p, ⋯⟩)) n
theorem
emultiplicity_prime_eq_emultiplicity_image_by_factor_orderIso
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[UniqueFactorizationMonoid N]
[UniqueFactorizationMonoid M]
{m p : Associates M}
{n : Associates N}
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
(d : ↑(Set.Iic m) ≃o ↑(Set.Iic n))
:
emultiplicity p m = emultiplicity (↑(d ⟨p, ⋯⟩)) n
def
mkFactorOrderIsoOfFactorDvdEquiv
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[Subsingleton Mˣ]
[Subsingleton Nˣ]
{m : M}
{n : N}
{d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }}
(hd : ∀ (l l' : { l : M // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l')
:
↑(Set.Iic (Associates.mk m)) ≃o ↑(Set.Iic (Associates.mk n))
The order isomorphism between the factors of mk m
and the factors of mk n
induced by a
bijection between the factors of m
and the factors of n
that preserves ∣
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
mkFactorOrderIsoOfFactorDvdEquiv_apply_coe
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[Subsingleton Mˣ]
[Subsingleton Nˣ]
{m : M}
{n : N}
{d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }}
(hd : ∀ (l l' : { l : M // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l')
(l : ↑(Set.Iic (Associates.mk m)))
:
↑((mkFactorOrderIsoOfFactorDvdEquiv hd) l) = Associates.mk ↑(d ⟨associatesEquivOfUniqueUnits ↑l, ⋯⟩)
@[simp]
theorem
mkFactorOrderIsoOfFactorDvdEquiv_symm_apply_coe
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[Subsingleton Mˣ]
[Subsingleton Nˣ]
{m : M}
{n : N}
{d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }}
(hd : ∀ (l l' : { l : M // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l')
(l : ↑(Set.Iic (Associates.mk n)))
:
↑((RelIso.symm (mkFactorOrderIsoOfFactorDvdEquiv hd)) l) = Associates.mk ↑(d.symm ⟨associatesEquivOfUniqueUnits ↑l, ⋯⟩)
theorem
mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[Subsingleton Mˣ]
[Subsingleton Nˣ]
[UniqueFactorizationMonoid M]
[UniqueFactorizationMonoid N]
{m p : M}
{n : N}
(hm : m ≠ 0)
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
{d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }}
(hd : ∀ (l l' : { l : M // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l')
:
↑(d ⟨p, ⋯⟩) ∈ UniqueFactorizationMonoid.normalizedFactors n
theorem
emultiplicity_factor_dvd_iso_eq_emultiplicity_of_mem_normalizedFactors
{M : Type u_1}
[CancelCommMonoidWithZero M]
{N : Type u_2}
[CancelCommMonoidWithZero N]
[Subsingleton Mˣ]
[Subsingleton Nˣ]
[UniqueFactorizationMonoid M]
[UniqueFactorizationMonoid N]
{m p : M}
{n : N}
(hm : m ≠ 0)
(hn : n ≠ 0)
(hp : p ∈ UniqueFactorizationMonoid.normalizedFactors m)
{d : { l : M // l ∣ m } ≃ { l : N // l ∣ n }}
(hd : ∀ (l l' : { l : M // l ∣ m }), ↑(d l) ∣ ↑(d l') ↔ ↑l ∣ ↑l')
:
emultiplicity (↑(d ⟨p, ⋯⟩)) n = emultiplicity p m