Disjoint extensions with coprime different ideals #
Let A ⊆ B be a finite extension of Dedekind domains and assume that A ⊆ R₁, R₂ ⊆ B are two
subrings such that Frac R₁ ⊔ Frac R₂ = Frac B, Frac R₁ and Frac R₂ are linearly disjoint
over Frac A, and that 𝓓(R₁/A) and 𝓓(R₂/A) are coprime where 𝓓 denotes the different ideal
and Frac R denotes the fraction field of a domain R.
Main results #
FractionalIdeal.differentIdeal_eq_map_differentIdeal:𝓓(B/R₁) = 𝓓(R₂/A)FractionalIdeal.differentIdeal_eq_differentIdeal_mul_differentIdeal_of_isCoprime:𝓓(B/A) = 𝓓(R₁/A) * 𝓓(R₂/A).
theorem
Submodule.traceDual_le_span_map_traceDual
(A : Type u_1)
(B : Type u_2)
{K : Type u_3}
{L : Type u_4}
[CommRing A]
[Field K]
[Algebra A K]
[IsFractionRing A K]
[CommRing B]
[Field L]
[Algebra B L]
[Algebra A L]
[Algebra K L]
[FiniteDimensional K L]
[IsScalarTower A K L]
(R₁ : Type u_5)
(R₂ : Type u_6)
[CommRing R₁]
[CommRing R₂]
[Algebra A R₁]
[Algebra A R₂]
[Algebra R₁ B]
[Algebra R₂ B]
[Algebra R₁ L]
[Algebra R₂ L]
[IsScalarTower A R₁ L]
[IsScalarTower R₁ B L]
[IsScalarTower R₂ B L]
[Module.Finite A R₂]
{F₁ F₂ : IntermediateField K L}
[Algebra R₁ ↥F₁]
[Algebra R₂ ↥F₂]
[NoZeroSMulDivisors R₁ ↥F₁]
[IsScalarTower A (↥F₂) L]
[IsScalarTower A R₂ ↥F₂]
[IsScalarTower R₁ (↥F₁) L]
[IsScalarTower R₂ (↥F₂) L]
[Algebra.IsSeparable K ↥F₂]
[Algebra.IsSeparable (↥F₁) L]
[Module.Free A R₂]
[IsLocalization (Algebra.algebraMapSubmonoid R₂ (nonZeroDivisors A)) ↥F₂]
(h₁ : F₁.LinearDisjoint ↥F₂)
(h₂ : F₁ ⊔ F₂ = ⊤)
:
theorem
FractionalIdeal.differentIdeal_dvd_map_differentIdeal
(A : Type u_1)
(B : Type u_2)
{K : Type u_3}
{L : Type u_4}
[CommRing A]
[Field K]
[Algebra A K]
[IsFractionRing A K]
[CommRing B]
[Field L]
[Algebra B L]
[Algebra A L]
[Algebra K L]
[FiniteDimensional K L]
[IsScalarTower A K L]
(R₁ : Type u_5)
(R₂ : Type u_6)
[CommRing R₁]
[CommRing R₂]
[Algebra A R₁]
[Algebra A R₂]
[Algebra R₁ B]
[Algebra R₂ B]
[Algebra R₁ L]
[Algebra R₂ L]
[IsScalarTower A R₁ L]
[IsScalarTower R₁ B L]
[IsScalarTower R₂ B L]
[Module.Finite A R₂]
{F₁ F₂ : IntermediateField K L}
[Algebra R₁ ↥F₁]
[Algebra R₂ ↥F₂]
[NoZeroSMulDivisors R₁ ↥F₁]
[IsScalarTower A (↥F₂) L]
[IsScalarTower A R₂ ↥F₂]
[IsScalarTower R₁ (↥F₁) L]
[IsScalarTower R₂ (↥F₂) L]
[Algebra.IsSeparable K ↥F₂]
[Algebra.IsSeparable (↥F₁) L]
[IsDomain A]
[IsDedekindDomain B]
[IsDedekindDomain R₁]
[IsDedekindDomain R₂]
[IsFractionRing B L]
[IsFractionRing R₁ ↥F₁]
[IsFractionRing R₂ ↥F₂]
[IsIntegrallyClosed A]
[IsIntegralClosure B R₁ L]
[NoZeroSMulDivisors R₁ B]
[NoZeroSMulDivisors R₂ B]
[Algebra.IsIntegral R₂ B]
[Module.Free A R₂]
[IsLocalization (Algebra.algebraMapSubmonoid R₂ (nonZeroDivisors A)) ↥F₂]
(h₁ : F₁.LinearDisjoint ↥F₂)
(h₂ : F₁ ⊔ F₂ = ⊤)
:
theorem
FractionalIdeal.map_differentIdeal_dvd_differentIdeal
(A : Type u_1)
(B : Type u_2)
[CommRing A]
[CommRing B]
(R₁ : Type u_5)
(R₂ : Type u_6)
[CommRing R₁]
[CommRing R₂]
[Algebra A R₁]
[Algebra A R₂]
[Algebra R₁ B]
[Algebra R₂ B]
[Module.Finite A R₂]
[IsDomain A]
[IsDedekindDomain B]
[IsDedekindDomain R₁]
[IsDedekindDomain R₂]
[IsIntegrallyClosed A]
[NoZeroSMulDivisors R₁ B]
[NoZeroSMulDivisors R₂ B]
[Algebra A B]
[Module.Finite A B]
[NoZeroSMulDivisors A B]
[NoZeroSMulDivisors A R₁]
[NoZeroSMulDivisors A R₂]
[Module.Finite A R₁]
[Module.Finite R₂ B]
[IsScalarTower A R₂ B]
[Module.Finite R₁ B]
[Algebra.IsSeparable (FractionRing A) (FractionRing B)]
[IsScalarTower A R₁ B]
(h : IsCoprime (Ideal.map (algebraMap R₁ B) (differentIdeal A R₁)) (Ideal.map (algebraMap R₂ B) (differentIdeal A R₂)))
:
theorem
FractionalIdeal.differentIdeal_eq_map_differentIdeal
(A : Type u_1)
(B : Type u_2)
{K : Type u_3}
{L : Type u_4}
[CommRing A]
[Field K]
[Algebra A K]
[IsFractionRing A K]
[CommRing B]
[Field L]
[Algebra B L]
[Algebra A L]
[Algebra K L]
[FiniteDimensional K L]
[IsScalarTower A K L]
(R₁ : Type u_5)
(R₂ : Type u_6)
[CommRing R₁]
[CommRing R₂]
[Algebra A R₁]
[Algebra A R₂]
[Algebra R₁ B]
[Algebra R₂ B]
[Algebra R₁ L]
[Algebra R₂ L]
[IsScalarTower A R₁ L]
[IsScalarTower R₁ B L]
[IsScalarTower R₂ B L]
[Module.Finite A R₂]
{F₁ F₂ : IntermediateField K L}
[Algebra R₁ ↥F₁]
[Algebra R₂ ↥F₂]
[NoZeroSMulDivisors R₁ ↥F₁]
[IsScalarTower A (↥F₂) L]
[IsScalarTower A R₂ ↥F₂]
[IsScalarTower R₁ (↥F₁) L]
[IsScalarTower R₂ (↥F₂) L]
[Algebra.IsSeparable K ↥F₂]
[Algebra.IsSeparable (↥F₁) L]
[IsDomain A]
[IsDedekindDomain B]
[IsDedekindDomain R₁]
[IsDedekindDomain R₂]
[IsFractionRing B L]
[IsFractionRing R₁ ↥F₁]
[IsFractionRing R₂ ↥F₂]
[IsIntegrallyClosed A]
[IsIntegralClosure B R₁ L]
[NoZeroSMulDivisors R₁ B]
[NoZeroSMulDivisors R₂ B]
[Algebra A B]
[Module.Finite A B]
[NoZeroSMulDivisors A B]
[NoZeroSMulDivisors A R₁]
[NoZeroSMulDivisors A R₂]
[Module.Finite A R₁]
[Module.Finite R₂ B]
[IsScalarTower A R₂ B]
[Module.Finite R₁ B]
[Algebra.IsSeparable (FractionRing A) (FractionRing B)]
[IsScalarTower A R₁ B]
[Module.Free A R₂]
(h₁ : F₁.LinearDisjoint ↥F₂)
(h₂ : F₁ ⊔ F₂ = ⊤)
(h₃ : IsCoprime (Ideal.map (algebraMap R₁ B) (differentIdeal A R₁)) (Ideal.map (algebraMap R₂ B) (differentIdeal A R₂)))
:
theorem
FractionalIdeal.differentIdeal_eq_differentIdeal_mul_differentIdeal_of_isCoprime
(A : Type u_1)
(B : Type u_2)
{K : Type u_3}
{L : Type u_4}
[CommRing A]
[Field K]
[Algebra A K]
[IsFractionRing A K]
[CommRing B]
[Field L]
[Algebra B L]
[Algebra A L]
[Algebra K L]
[FiniteDimensional K L]
[IsScalarTower A K L]
(R₁ : Type u_5)
(R₂ : Type u_6)
[CommRing R₁]
[CommRing R₂]
[Algebra A R₁]
[Algebra A R₂]
[Algebra R₁ B]
[Algebra R₂ B]
[Algebra R₁ L]
[Algebra R₂ L]
[IsScalarTower A R₁ L]
[IsScalarTower R₁ B L]
[IsScalarTower R₂ B L]
[Module.Finite A R₂]
{F₁ F₂ : IntermediateField K L}
[Algebra R₁ ↥F₁]
[Algebra R₂ ↥F₂]
[NoZeroSMulDivisors R₁ ↥F₁]
[IsScalarTower A (↥F₂) L]
[IsScalarTower A R₂ ↥F₂]
[IsScalarTower R₁ (↥F₁) L]
[IsScalarTower R₂ (↥F₂) L]
[Algebra.IsSeparable K ↥F₂]
[Algebra.IsSeparable (↥F₁) L]
[IsDomain A]
[IsDedekindDomain B]
[IsDedekindDomain R₁]
[IsDedekindDomain R₂]
[IsFractionRing B L]
[IsFractionRing R₁ ↥F₁]
[IsFractionRing R₂ ↥F₂]
[IsIntegrallyClosed A]
[IsIntegralClosure B R₁ L]
[NoZeroSMulDivisors R₁ B]
[NoZeroSMulDivisors R₂ B]
[Algebra A B]
[Module.Finite A B]
[NoZeroSMulDivisors A B]
[NoZeroSMulDivisors A R₁]
[NoZeroSMulDivisors A R₂]
[Module.Finite A R₁]
[Module.Finite R₂ B]
[IsScalarTower A R₂ B]
[Module.Finite R₁ B]
[Algebra.IsSeparable (FractionRing A) (FractionRing B)]
[IsScalarTower A R₁ B]
[Module.Free A R₂]
(h₁ : F₁.LinearDisjoint ↥F₂)
(h₂ : F₁ ⊔ F₂ = ⊤)
(h₃ : IsCoprime (Ideal.map (algebraMap R₁ B) (differentIdeal A R₁)) (Ideal.map (algebraMap R₂ B) (differentIdeal A R₂)))
: