Documentation

Mathlib.RingTheory.DedekindDomain.Different

The different ideal #

Main definition #

Main results #

TODO #

noncomputable def Submodule.traceDual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] (I : Submodule B L) :

Under the AKLB setting, Iᵛ := traceDual A K (I : Submodule B L) is the Submodule B L such that x ∈ Iᵛ ↔ ∀ y ∈ I, Tr(x, y) ∈ A

Equations
Instances For
    theorem Submodule.mem_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I : Submodule B L} {x : L} :
    x traceDual A K I aI, ((Algebra.traceForm K L) x) a (algebraMap A K).range
    theorem Submodule.le_traceDual_iff_map_le_one {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
    I traceDual A K J map (A (Algebra.trace K L)) (restrictScalars A (I * J)) 1
    theorem Submodule.le_traceDual_mul_iff {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J J' : Submodule B L} :
    I traceDual A K (J * J') I * J traceDual A K J'
    theorem Submodule.le_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
    I traceDual A K J I * J traceDual A K 1
    theorem Submodule.le_traceDual_comm {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
    I traceDual A K J J traceDual A K I
    theorem Submodule.le_traceDual_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I : Submodule B L} :
    I traceDual A K (traceDual A K I)
    @[simp]
    theorem Submodule.traceDual_bot {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] :
    theorem Submodule.traceDual_top' {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] :
    theorem Submodule.traceDual_top {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [Decidable (IsField A)] :
    traceDual A K = if IsField A then else
    theorem Submodule.mem_traceDual_iff_isIntegral {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] {I : Submodule B L} {x : L} :
    x traceDual A K I aI, IsIntegral A (((Algebra.traceForm K L) x) a)
    theorem Submodule.one_le_traceDual_one {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] :
    1 traceDual A K 1
    theorem isIntegral_discr_mul_of_mem_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] [Algebra.IsSeparable K L] (I : Submodule B L) {ι : Type u_4} [DecidableEq ι] [Fintype ι] {b : Basis ι K L} (hb : ∀ (i : ι), IsIntegral A (b i)) {a x : L} (ha : a I) (hx : x Submodule.traceDual A K I) :
    IsIntegral A (Algebra.discr K b a * x)

    If b is an A-integral basis of L with discriminant b, then d • a * x is integral over A for all a ∈ I and x ∈ Iᵛ.

    noncomputable def FractionalIdeal.dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] [Algebra.IsSeparable K L] [IsDomain A] [IsFractionRing B L] [Nontrivial B] [NoZeroDivisors B] (I : FractionalIdeal (nonZeroDivisors B) L) :

    The dual of a non-zero fractional ideal is the dual of the submodule under the traceform.

    Equations
    Instances For
      theorem FractionalIdeal.coe_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) :
      (dual A K I) = Submodule.traceDual A K I
      @[simp]
      theorem FractionalIdeal.coe_dual_one (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_3) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] :
      (dual A K 1) = Submodule.traceDual A K 1
      @[simp]
      theorem FractionalIdeal.dual_zero (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_3) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] :
      dual A K 0 = 0
      theorem FractionalIdeal.mem_dual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) {x : L} :
      x dual A K I aI, ((Algebra.traceForm K L) x) a (algebraMap A K).range
      theorem FractionalIdeal.dual_ne_zero (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) :
      dual A K I 0
      @[simp]
      theorem FractionalIdeal.dual_eq_zero_iff {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} :
      dual A K I = 0 I = 0
      theorem FractionalIdeal.dual_ne_zero_iff {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} :
      dual A K I 0 I 0
      theorem FractionalIdeal.le_dual_inv_aux (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) (hIJ : I * J 1) :
      J dual A K I
      theorem FractionalIdeal.one_le_dual_one (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] :
      1 dual A K 1
      theorem FractionalIdeal.le_dual_iff (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hJ : J 0) :
      I dual A K J I * J dual A K 1
      theorem FractionalIdeal.dual_inv_le (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) :
      (dual A K I)⁻¹ I
      theorem FractionalIdeal.dual_eq_mul_inv (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) :
      dual A K I = dual A K 1 * I⁻¹
      theorem FractionalIdeal.dual_div_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} :
      dual A K J / dual A K I = I / J
      theorem FractionalIdeal.dual_mul_self (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) :
      dual A K I * I = dual A K 1
      theorem FractionalIdeal.self_mul_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) :
      I * dual A K I = dual A K 1
      theorem FractionalIdeal.dual_inv (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} :
      dual A K I⁻¹ = dual A K 1 * I
      @[simp]
      theorem FractionalIdeal.dual_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) :
      dual A K (dual A K I) = I
      @[simp]
      theorem FractionalIdeal.dual_le_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hI : I 0) (hJ : J 0) :
      dual A K I dual A K J J I
      def differentIdeal (A : Type u_1) (B : Type u_3) [CommRing A] [CommRing B] [Algebra A B] [IsDomain A] [IsDedekindDomain B] [NoZeroSMulDivisors A B] :

      The different ideal of an extension of integral domains B/A is the inverse of the dual of A as an ideal of B. See coeIdeal_differentIdeal and coeSubmodule_differentIdeal.

      Equations
      Instances For
        theorem differentialIdeal_le_iff {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsIntegrallyClosed A] [IsDedekindDomain B] [IsFractionRing B L] {I : Ideal B} (hI : I ) [NoZeroSMulDivisors A B] :
        theorem traceForm_dualSubmodule_adjoin (A : Type u_1) (K : Type u_2) {L : Type u} [CommRing A] [Field K] [Field L] [Algebra A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegrallyClosed A] {x : L} (hx : Algebra.adjoin K {x} = ) (hAx : IsIntegral A x) :
        (Algebra.traceForm K L).dualSubmodule (Subalgebra.toSubmodule (Algebra.adjoin A {x})) = ((Polynomial.aeval x) (Polynomial.derivative (minpoly K x)))⁻¹ Subalgebra.toSubmodule (Algebra.adjoin A {x})
        theorem conductor_mul_differentIdeal (A : Type u_1) (K : Type u_2) (L : Type u) {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsIntegrallyClosed A] [IsDedekindDomain B] [NoZeroSMulDivisors A B] (x : B) (hx : Algebra.adjoin K {(algebraMap B L) x} = ) :
        conductor A x * differentIdeal A B = Ideal.span {(Polynomial.aeval x) (Polynomial.derivative (minpoly A x))}
        theorem aeval_derivative_mem_differentIdeal (A : Type u_1) (K : Type u_2) (L : Type u) {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsIntegrallyClosed A] [IsDedekindDomain B] [NoZeroSMulDivisors A B] (x : B) (hx : Algebra.adjoin K {(algebraMap B L) x} = ) :
        (Polynomial.aeval x) (Polynomial.derivative (minpoly A x)) differentIdeal A B
        theorem pow_sub_one_dvd_differentIdeal_aux (A : Type u_1) (K : Type u_2) (L : Type u) {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsIntegrallyClosed A] [IsDedekindDomain B] [IsFractionRing B L] [IsDedekindDomain A] [NoZeroSMulDivisors A B] [Module.Finite A B] {p : Ideal A} [p.IsMaximal] (P : Ideal B) {e : } (he : e 0) (hp : p ) (hP : P ^ e Ideal.map (algebraMap A B) p) :
        P ^ (e - 1) differentIdeal A B
        theorem pow_sub_one_dvd_differentIdeal (A : Type u_1) {B : Type u_3} [CommRing A] [CommRing B] [Algebra A B] [IsDomain A] [IsIntegrallyClosed A] [IsDedekindDomain B] [IsDedekindDomain A] [NoZeroSMulDivisors A B] [Module.Finite A B] [Algebra.IsSeparable (FractionRing A) (FractionRing B)] {p : Ideal A} [p.IsMaximal] (P : Ideal B) (e : ) (hp : p ) (hP : P ^ e Ideal.map (algebraMap A B) p) :
        P ^ (e - 1) differentIdeal A B