Documentation

Mathlib.RingTheory.Trace.Quotient

We gather results about the relations between the trace map on B → A and the trace map on quotients and localizations.

Main Results #

noncomputable def equivQuotMaximalIdealOfIsLocalization {R : Type u_1} [CommRing R] (p : Ideal R) [p.IsMaximal] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] :

The isomorphism R ⧸ p ≃+* Rₚ ⧸ maximalIdeal Rₚ, where Rₚ satisfies IsLocalization.AtPrime Rₚ p. In particular, localization preserves the residue field.

Equations
Instances For
    theorem IsLocalization.AtPrime.map_eq_maximalIdeal {R : Type u_1} [CommRing R] (p : Ideal R) [p.IsMaximal] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] :
    theorem comap_map_eq_map_of_isLocalization_algebraMapSubmonoid {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsMaximal] {Sₚ : Type u_4} [CommRing Sₚ] [Algebra S Sₚ] [Algebra R Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [IsScalarTower R S Sₚ] :
    noncomputable def quotMapEquivQuotMapMaximalIdealOfIsLocalization {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsMaximal] (Rₚ : Type u_3) (Sₚ : Type u_4) [CommRing Rₚ] [CommRing Sₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] [Algebra S Sₚ] [Algebra R Sₚ] [Algebra Rₚ Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] :

    The isomorphism S ⧸ pS ≃+* Sₚ ⧸ pSₚ.

    Equations
    Instances For
      theorem trace_quotient_eq_trace_localization_quotient {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsMaximal] (Rₚ : Type u_3) (Sₚ : Type u_4) [CommRing Rₚ] [CommRing Sₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] [Algebra S Sₚ] [Algebra R Sₚ] [Algebra Rₚ Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (x : S) :
      theorem Algebra.trace_quotient_eq_of_isDedekindDomain {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsMaximal] (x : S) [IsDedekindDomain R] [IsDomain S] [NoZeroSMulDivisors R S] [Module.Finite R S] [IsIntegrallyClosed S] :

      The trace map on B → A coincides with the trace map on B⧸pB → A⧸p.