We gather results about the relations between the trace map on B → A
and the trace map on
quotients and localizations.
Main Results #
Algebra.trace_quotient_eq_of_isDedekindDomain
: The trace map onB → A
coincides with the trace map onB⧸pB → A⧸p
.
theorem
Algebra.trace_quotient_mk
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Module.Free R S]
[Module.Finite R S]
[IsLocalRing R]
(x : S)
:
(trace (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R)))
((Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) x) = (Ideal.Quotient.mk (IsLocalRing.maximalIdeal R)) ((trace R S) x)
noncomputable def
equivQuotMaximalIdealOfIsLocalization
{R : Type u_1}
[CommRing R]
(p : Ideal R)
[p.IsMaximal]
(Rₚ : Type u_3)
[CommRing Rₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p]
[IsLocalRing Rₚ]
:
R ⧸ p ≃+* Rₚ ⧸ IsLocalRing.maximalIdeal Rₚ
The isomorphism R ⧸ p ≃+* Rₚ ⧸ maximalIdeal Rₚ
, where Rₚ
satisfies
IsLocalization.AtPrime Rₚ p
. In particular, localization preserves the residue field.
Equations
Instances For
theorem
IsLocalization.AtPrime.map_eq_maximalIdeal
{R : Type u_1}
[CommRing R]
(p : Ideal R)
[p.IsMaximal]
(Rₚ : Type u_3)
[CommRing Rₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p]
[IsLocalRing Rₚ]
:
Ideal.map (algebraMap R Rₚ) p = IsLocalRing.maximalIdeal Rₚ
theorem
comap_map_eq_map_of_isLocalization_algebraMapSubmonoid
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal R)
[p.IsMaximal]
{Sₚ : Type u_4}
[CommRing Sₚ]
[Algebra S Sₚ]
[Algebra R Sₚ]
[IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ]
[IsScalarTower R S Sₚ]
:
Ideal.comap (algebraMap S Sₚ) (Ideal.map (algebraMap R Sₚ) p) = Ideal.map (algebraMap R S) p
noncomputable def
quotMapEquivQuotMapMaximalIdealOfIsLocalization
{R : Type u_1}
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal R)
[p.IsMaximal]
(Rₚ : Type u_3)
(Sₚ : Type u_4)
[CommRing Rₚ]
[CommRing Sₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p]
[IsLocalRing Rₚ]
[Algebra S Sₚ]
[Algebra R Sₚ]
[Algebra Rₚ Sₚ]
[IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ]
[IsScalarTower R S Sₚ]
[IsScalarTower R Rₚ Sₚ]
:
S ⧸ Ideal.map (algebraMap R S) p ≃+* Sₚ ⧸ Ideal.map (algebraMap Rₚ Sₚ) (IsLocalRing.maximalIdeal Rₚ)
The isomorphism S ⧸ pS ≃+* Sₚ ⧸ pSₚ
.
Equations
- quotMapEquivQuotMapMaximalIdealOfIsLocalization S p Rₚ Sₚ = (Ideal.quotEquivOfEq ⋯).trans (RingHom.quotientKerEquivOfSurjective ⋯)
Instances For
theorem
trace_quotient_eq_trace_localization_quotient
{R : Type u_1}
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal R)
[p.IsMaximal]
(Rₚ : Type u_3)
(Sₚ : Type u_4)
[CommRing Rₚ]
[CommRing Sₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p]
[IsLocalRing Rₚ]
[Algebra S Sₚ]
[Algebra R Sₚ]
[Algebra Rₚ Sₚ]
[IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ]
[IsScalarTower R S Sₚ]
[IsScalarTower R Rₚ Sₚ]
(x : S)
:
(Algebra.trace (R ⧸ p) (S ⧸ Ideal.map (algebraMap R S) p)) ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) p)) x) = (equivQuotMaximalIdealOfIsLocalization p Rₚ).symm
((Algebra.trace (Rₚ ⧸ IsLocalRing.maximalIdeal Rₚ)
(Sₚ ⧸ Ideal.map (algebraMap Rₚ Sₚ) (IsLocalRing.maximalIdeal Rₚ)))
((algebraMap S (Sₚ ⧸ Ideal.map (algebraMap Rₚ Sₚ) (IsLocalRing.maximalIdeal Rₚ))) x))
theorem
Algebra.trace_quotient_eq_of_isDedekindDomain
{R : Type u_1}
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
(p : Ideal R)
[p.IsMaximal]
(x : S)
[IsDedekindDomain R]
[IsDomain S]
[NoZeroSMulDivisors R S]
[Module.Finite R S]
[IsIntegrallyClosed S]
:
(trace (R ⧸ p) (S ⧸ Ideal.map (algebraMap R S) p)) ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) p)) x) = (Ideal.Quotient.mk p) ((intTrace R S) x)
The trace map on B → A
coincides with the trace map on B⧸pB → A⧸p
.