Documentation

Mathlib.RingTheory.Unramified.Locus

Unramified locus of an algebra #

Main results #

@[reducible, inline]
abbrev Algebra.IsUnramifiedAt (R : Type u_1) {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (q : Ideal A) [q.IsPrime] :

We say that an R-algebra A is unramified at a prime q of A if A_q is formally unramified over R.

If A is of finite type over R and q is lying over p, then this is equivalent to κ(q)/κ(p) being separable and pA_q = qA_q. See Algebra.isUnramifiedAt_iff_map_eq in RingTheory.Unramified.LocalRing

Equations
Instances For
    def Algebra.unramifiedLocus (R : Type u_1) (A : Type u_2) [CommRing R] [CommRing A] [Algebra R A] :

    Algebra.unramifiedLocus R A is the set of primes p of A that are unramified.

    Equations
    Instances For
      theorem Algebra.IsUnramifiedAt.comp {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (p : Ideal A) (P : Ideal B) [P.LiesOver p] [p.IsPrime] [P.IsPrime] [IsUnramifiedAt R p] [IsUnramifiedAt A P] :
      theorem Algebra.IsUnramifiedAt.of_restrictScalars (R : Type u_1) {A : Type u_2} {B : Type u_3} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (P : Ideal B) [P.IsPrime] [IsUnramifiedAt R P] :