Unramified locus of an algebra #
Main results #
Algebra.unramifiedLocus
: The set of primes that is unramified over the base.Algebra.basicOpen_subset_unramifiedLocus_iff
:D(f)
is contained in the unramified locus if and only ifA_f
is unramified overR
.Algebra.unramifiedLocus_eq_univ_iff
: The unramified locus is the whole spectrum if and only ifA
is unramified overR
.Algebra.isOpen_unramifiedLocus
: IfA
is (essentially) of finite type overR
, then the unramified locus is open.
def
Algebra.unramifiedLocus
(R A : Type u)
[CommRing R]
[CommRing A]
[Algebra R A]
:
Set (PrimeSpectrum A)
Algebra.unramifiedLocus R A
is the set of primes p
of A
such that Aₚ
is formally unramified over R
.
Equations
- Algebra.unramifiedLocus R A = {p : PrimeSpectrum A | Algebra.FormallyUnramified R (Localization.AtPrime p.asIdeal)}
Instances For
theorem
Algebra.unramifiedLocus_eq_compl_support
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
:
unramifiedLocus R A = (Module.support A (Ω[A⁄R]))ᶜ
theorem
Algebra.basicOpen_subset_unramifiedLocus_iff
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
{f : A}
:
↑(PrimeSpectrum.basicOpen f) ⊆ unramifiedLocus R A ↔ FormallyUnramified R (Localization.Away f)
theorem
Algebra.unramifiedLocus_eq_univ_iff
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
:
unramifiedLocus R A = Set.univ ↔ FormallyUnramified R A
theorem
Algebra.isOpen_unramifiedLocus
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
[EssFiniteType R A]
:
IsOpen (unramifiedLocus R A)