Support of a module #
Main results #
Module.support
: The support of anR
-module as a subset ofSpec R
.Module.mem_support_iff_exists_annihilator
:p ∈ Supp M ↔ ∃ m, Ann(m) ≤ p
.Module.support_eq_empty_iff
:Supp M = ∅ ↔ M = 0
Module.support_of_exact
:Supp N = Supp M ∪ Supp P
for an exact sequence0 → M → N → P → 0
.Module.support_eq_zeroLocus
: IfM
isR
-finite, thenSupp M = Z(Ann(M))
.LocalizedModule.exists_subsingleton_away
: IfM
isR
-finite andMₚ = 0
, thenM[1/f] = 0
for somep ∈ D(f)
.
Also see Mathlib.RingTheory.Spectrum.Prime.Module
for other results
depending on the Zariski topology.
TODO #
- Connect to associated primes once we have them in mathlib.
- Given an
R
-algebraf : R → A
and a finiteR
-moduleM
,Supp_A (A ⊗ M) = f♯ ⁻¹ Supp M
wheref♯ : Spec A → Spec R
. (stacks#0BUR)
def
Module.support
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
Set (PrimeSpectrum R)
The support of a module, defined as the set of primes p
such that Mₚ ≠ 0
.
Equations
- Module.support R M = {p : PrimeSpectrum R | Nontrivial (LocalizedModule p.asIdeal.primeCompl M)}
Instances For
theorem
Module.mem_support_iff
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
p ∈ support R M ↔ Nontrivial (LocalizedModule p.asIdeal.primeCompl M)
theorem
Module.not_mem_support_iff
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
p ∉ support R M ↔ Subsingleton (LocalizedModule p.asIdeal.primeCompl M)
theorem
Module.not_mem_support_iff'
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
theorem
Module.mem_support_iff'
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
theorem
Module.mem_support_iff_exists_annihilator
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
p ∈ support R M ↔ ∃ (m : M), (Submodule.span R {m}).annihilator ≤ p.asIdeal
theorem
Module.mem_support_iff_of_span_eq_top
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
{s : Set M}
(hs : Submodule.span R s = ⊤)
:
p ∈ support R M ↔ ∃ m ∈ s, (Submodule.span R {m}).annihilator ≤ p.asIdeal
theorem
Module.annihilator_le_of_mem_support
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
(hp : p ∈ support R M)
:
annihilator R M ≤ p.asIdeal
theorem
LocalizedModule.subsingleton_iff_support_subset
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{f : R}
:
Subsingleton (LocalizedModule (Submonoid.powers f) M) ↔ Module.support R M ⊆ PrimeSpectrum.zeroLocus {f}
theorem
Module.support_eq_empty_iff
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
:
support R M = ∅ ↔ Subsingleton M
theorem
Module.support_eq_empty
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Subsingleton M]
:
theorem
Module.support_of_algebra
{R : Type u_1}
[CommRing R]
{A : Type u_3}
[Ring A]
[Algebra R A]
:
support R A = PrimeSpectrum.zeroLocus ↑(RingHom.ker (algebraMap R A))
theorem
Module.support_of_noZeroSMulDivisors
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
[NoZeroSMulDivisors R M]
[Nontrivial M]
:
theorem
Module.mem_support_iff_of_finite
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
[Module.Finite R M]
:
p ∈ support R M ↔ annihilator R M ≤ p.asIdeal
theorem
Module.support_subset_of_injective
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(hf : Function.Injective ⇑f)
:
theorem
Module.support_subset_of_surjective
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(hf : Function.Surjective ⇑f)
:
theorem
Module.support_of_exact
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{N : Type u_3}
{P : Type u_4}
[AddCommGroup N]
[Module R N]
[AddCommGroup P]
[Module R P]
{f : M →ₗ[R] N}
{g : N →ₗ[R] P}
(h : Function.Exact ⇑f ⇑g)
(hf : Function.Injective ⇑f)
(hg : Function.Surjective ⇑g)
:
Given an exact sequence 0 → M → N → P → 0
of R
-modules, Supp N = Supp M ∪ Supp P
.
theorem
LinearEquiv.support_eq
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
(e : M ≃ₗ[R] N)
:
Module.support R M = Module.support R N
theorem
Module.support_eq_zeroLocus
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
:
support R M = PrimeSpectrum.zeroLocus ↑(annihilator R M)
If M
is R
-finite, then Supp M = Z(Ann(M))
.
theorem
LocalizedModule.exists_subsingleton_away
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
(p : Ideal R)
[p.IsPrime]
[Subsingleton (LocalizedModule p.primeCompl M)]
:
∃ f ∉ p, Subsingleton (LocalizedModule (Submonoid.powers f) M)
If M
is a finite module such that Mₚ = 0
for some p
,
then M[1/f] = 0
for some p ∈ D(f)
.