Documentation

Mathlib.NumberTheory.RamificationInertia.Unramified

Unramified and ramification index #

We connect Ideal.ramificationIdx to the commutative algebra notion predicate of IsUnramifiedAt.

Main result #

theorem IsUnramifiedAt.of_liesOver_of_ne_bot (R : Type u_1) {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra S T] [Algebra R T] [IsScalarTower R S T] (p : Ideal S) (P : Ideal T) [P.LiesOver p] [p.IsPrime] [P.IsPrime] [Algebra.IsUnramifiedAt R P] [Algebra.EssFiniteType R S] [Algebra.EssFiniteType R T] [IsDedekindDomain S] (hP₁ : P.primeCompl nonZeroDivisors T) (hP₂ : p P ) :
theorem Algebra.IsUnramifiedAt.of_liesOver (R : Type u_1) {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra S T] [Algebra R T] [IsScalarTower R S T] (p : Ideal S) (P : Ideal T) [P.LiesOver p] [p.IsPrime] [P.IsPrime] [IsUnramifiedAt R P] [EssFiniteType R S] [EssFiniteType R T] [IsDedekindDomain S] [IsDomain T] [NoZeroSMulDivisors S T] :

Up to techinical conditions, If T/S/R is a tower of algebras, P is a prime of T unramified in R, then P ∩ S (as a prime of S) is also unramified in R.

Let R be a domain of characteristic 0, finite rank over , S be a dedekind domain that is a finite R-algebra. Let p be a prime of S, then p is unramifed iff e(p) = 1.