Equivalent conditions for DVR #
In IsDiscreteValuationRing.TFAE
, we show that the following are equivalent for a
noetherian local domain that is not a field (R, m, k)
:
R
is a discrete valuation ringR
is a valuation ringR
is a dedekind domainR
is integrally closed with a unique prime idealm
is principaldimₖ m/m² = 1
- Every nonzero ideal is a power of
m
.
Also see tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain
for a version without ¬ IsField R
.
theorem
exists_maximalIdeal_pow_eq_of_principal
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
(h' : Submodule.IsPrincipal (IsLocalRing.maximalIdeal R))
(I : Ideal R)
(hI : I ≠ ⊥)
:
∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n
theorem
maximalIdeal_isPrincipal_of_isDedekindDomain
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
[IsDomain R]
[IsDedekindDomain R]
:
theorem
tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
:
[IsPrincipalIdealRing R, ValuationRing R, IsDedekindDomain R,
IsIntegrallyClosed R ∧ ∀ (P : Ideal R), P ≠ ⊥ → P.IsPrime → P = IsLocalRing.maximalIdeal R,
Submodule.IsPrincipal (IsLocalRing.maximalIdeal R),
Module.finrank (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) ≤ 1,
∀ (I : Ideal R), I ≠ ⊥ → ∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n].TFAE
Let (R, m, k)
be a noetherian local domain (possibly a field).
The following are equivalent:
0. R
is a PID
R
is a valuation ringR
is a dedekind domainR
is integrally closed with at most one non-zero prime idealm
is principaldimₖ m/m² ≤ 1
- Every nonzero ideal is a power of
m
.
Also see IsDiscreteValuationRing.TFAE
for a version assuming ¬ IsField R
.
theorem
IsDiscreteValuationRing.TFAE
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
(h : ¬IsField R)
:
[IsDiscreteValuationRing R, ValuationRing R, IsDedekindDomain R,
IsIntegrallyClosed R ∧ ∃! P : Ideal R, P ≠ ⊥ ∧ P.IsPrime, Submodule.IsPrincipal (IsLocalRing.maximalIdeal R),
Module.finrank (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) = 1,
∀ (I : Ideal R), I ≠ ⊥ → ∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n].TFAE
The following are equivalent for a
noetherian local domain that is not a field (R, m, k)
:
0. R
is a discrete valuation ring
R
is a valuation ringR
is a dedekind domainR
is integrally closed with a unique non-zero prime idealm
is principaldimₖ m/m² = 1
- Every nonzero ideal is a power of
m
.
Also see tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain
for a version without ¬ IsField R
.
theorem
IsLocalRing.finrank_CotangentSpace_eq_one_iff
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
:
Module.finrank (ResidueField R) (CotangentSpace R) = 1 ↔ IsDiscreteValuationRing R
@[deprecated IsLocalRing.finrank_CotangentSpace_eq_one_iff (since := "2024-11-09")]
theorem
LocalRing.finrank_CotangentSpace_eq_one_iff
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
:
theorem
IsLocalRing.finrank_CotangentSpace_eq_one
(R : Type u_1)
[CommRing R]
[IsDomain R]
[IsDiscreteValuationRing R]
:
Module.finrank (ResidueField R) (CotangentSpace R) = 1
@[deprecated IsLocalRing.finrank_CotangentSpace_eq_one (since := "2024-11-09")]
theorem
LocalRing.finrank_CotangentSpace_eq_one
(R : Type u_1)
[CommRing R]
[IsDomain R]
[IsDiscreteValuationRing R]
:
@[instance 100]
instance
IsDedekindDomain.isPrincipalIdealRing
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
[IsDedekindDomain R]
: