Documentation

Mathlib.RingTheory.DividedPowers.RatAlgebra

Examples of divided power structures #

In this file we show that, for certain choices of a commutative (semi)ring A and an ideal I of A, the family of maps ℕ → A → A given by fun n x ↦ x^n/n! is a divided power structure on I.

Main Definitions #

Main Results #

References #

noncomputable def DividedPowers.OfInvertibleFactorial.dpow {A : Type u_1} [CommSemiring A] (I : Ideal A) [DecidablePred fun (x : A) => x I] :
AA

The family of functions ℕ → A → A given by x^n/n!.

Equations
Instances For
    theorem DividedPowers.OfInvertibleFactorial.dpow_eq_of_mem {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {m : } {x : A} (hx : x I) :
    dpow I m x = Ring.inverse m.factorial * x ^ m
    theorem DividedPowers.OfInvertibleFactorial.dpow_eq_of_not_mem {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {m : } {x : A} (hx : xI) :
    dpow I m x = 0
    theorem DividedPowers.OfInvertibleFactorial.dpow_null {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {m : } {x : A} (hx : xI) :
    dpow I m x = 0
    theorem DividedPowers.OfInvertibleFactorial.dpow_zero {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {x : A} (hx : x I) :
    dpow I 0 x = 1
    theorem DividedPowers.OfInvertibleFactorial.dpow_one {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {x : A} (hx : x I) :
    dpow I 1 x = x
    theorem DividedPowers.OfInvertibleFactorial.dpow_mem {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {m : } (hm : m 0) {x : A} (hx : x I) :
    dpow I m x I
    theorem DividedPowers.OfInvertibleFactorial.dpow_add_of_lt {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) {m : } (hmn : m < n) {x y : A} (hx : x I) (hy : y I) :
    dpow I m (x + y) = kFinset.antidiagonal m, dpow I k.1 x * dpow I k.2 y
    theorem DividedPowers.OfInvertibleFactorial.dpow_add {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) (hnI : I ^ n = 0) {m : } {x : A} (hx : x I) {y : A} (hy : y I) :
    dpow I m (x + y) = kFinset.antidiagonal m, dpow I k.1 x * dpow I k.2 y
    theorem DividedPowers.OfInvertibleFactorial.dpow_mul {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {m : } {a x : A} (hx : x I) :
    dpow I m (a * x) = a ^ m * dpow I m x
    theorem DividedPowers.OfInvertibleFactorial.dpow_mul_of_add_lt {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) {m k : } (hkm : m + k < n) {x : A} (hx : x I) :
    dpow I m x * dpow I k x = ((m + k).choose m) * dpow I (m + k) x
    theorem DividedPowers.OfInvertibleFactorial.mul_dpow {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) (hnI : I ^ n = 0) {m k : } {x : A} (hx : x I) :
    dpow I m x * dpow I k x = ((m + k).choose m) * dpow I (m + k) x
    theorem DividedPowers.OfInvertibleFactorial.dpow_comp_of_mul_lt {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) {m k : } (hk : k 0) (hkm : m * k < n) {x : A} (hx : x I) :
    dpow I m (dpow I k x) = (m.uniformBell k) * dpow I (m * k) x
    theorem DividedPowers.OfInvertibleFactorial.dpow_comp {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) (hnI : I ^ n = 0) {m k : } (hk : k 0) {x : A} (hx : x I) :
    dpow I m (dpow I k x) = (m.uniformBell k) * dpow I (m * k) x
    noncomputable def DividedPowers.OfInvertibleFactorial.dividedPowers {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) (hnI : I ^ n = 0) :

    If (n-1)! is invertible in A and I^n = 0, then I admits a divided power structure. Proposition 1.2.7 of [B74], part (ii).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem DividedPowers.OfInvertibleFactorial.dpow_apply {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] {n : } (hn_fac : IsUnit (n - 1).factorial) (hnI : I ^ n = 0) {m : } {x : A} :
      (dividedPowers hn_fac hnI).dpow m x = if x I then Ring.inverse m.factorial * x ^ m else 0
      noncomputable def DividedPowers.OfSquareZero.dividedPowers {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] (hI2 : I ^ 2 = 0) :

      If I^2 = 0, then I admits a divided power structure.

      Equations
      Instances For
        theorem DividedPowers.OfSquareZero.dpow_of_two_le {A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun (x : A) => x I] (hI2 : I ^ 2 = 0) {n : } (hn : 2 n) (a : A) :
        (dividedPowers hI2).dpow n a = 0
        noncomputable def DividedPowers.IsNilpotent.dividedPowers {A : Type u_1} [CommRing A] {p : } [Fact (Nat.Prime p)] (hp : IsNilpotent p) {I : Ideal A} [DecidablePred fun (x : A) => x I] (hIp : I ^ p = 0) :

        If A is a commutative ring of prime characteristic p and I is an ideal such that I^p = 0, then I admits a divided power structure.

        Equations
        Instances For
          theorem DividedPowers.IsNilpotent.dpow_of_prime_le {A : Type u_1} [CommRing A] {p : } [Fact (Nat.Prime p)] (hp : IsNilpotent p) {I : Ideal A} [DecidablePred fun (x : A) => x I] (hIp : I ^ p = 0) {n : } (hn : p n) (a : A) :
          (dividedPowers hp hIp).dpow n a = 0
          noncomputable def DividedPowers.CharP.dividedPowers (A : Type u_1) [CommRing A] (p : ) [CharP A p] [Fact (Nat.Prime p)] {I : Ideal A} [DecidablePred fun (x : A) => x I] (hIp : I ^ p = 0) :

          If A is a commutative ring of prime characteristic p and I is an ideal such that I^p = 0, then I admits a divided power structure.

          Equations
          Instances For
            theorem DividedPowers.CharP.dpow_of_prime_le (A : Type u_1) [CommRing A] (p : ) [CharP A p] [Fact (Nat.Prime p)] {I : Ideal A} [DecidablePred fun (x : A) => x I] (hIp : I ^ p = 0) {n : } (hn : p n) (a : A) :
            (dividedPowers A p hIp).dpow n a = 0
            noncomputable def DividedPowers.RatAlgebra.dpow {R : Type u_1} [CommSemiring R] (I : Ideal R) [DecidablePred fun (x : R) => x I] :
            RR

            The family ℕ → R → R given by dpow n x = x ^ n / n!.

            Equations
            Instances For
              theorem DividedPowers.RatAlgebra.dpow_eq_of_mem {R : Type u_1} [CommSemiring R] {I : Ideal R} [DecidablePred fun (x : R) => x I] (n : ) {x : R} (hx : x I) :
              dpow I n x = Ring.inverse n.factorial * x ^ n
              noncomputable def DividedPowers.RatAlgebra.dividedPowers {R : Type u_1} [CommSemiring R] (I : Ideal R) [DecidablePred fun (x : R) => x I] [Algebra R] :

              If I is an ideal in a -algebra A, then I admits a unique divided power structure, given by dpow n x = x ^ n / n!.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem DividedPowers.RatAlgebra.dpow_apply {R : Type u_1} [CommSemiring R] (I : Ideal R) [DecidablePred fun (x : R) => x I] [Algebra R] {n : } {x : R} :
                theorem DividedPowers.RatAlgebra.dpow_eq_inv_fact_smul {R : Type u_1} [CommSemiring R] (I : Ideal R) [Algebra R] (hI : DividedPowers I) {n : } {x : R} (hx : x I) :
                hI.dpow n x = Ring.inverse n.factorial x ^ n

                If I is an ideal in a -algebra A, then the divided power structure on I given by dpow n x = x ^ n / n! is the only possible one.

                theorem DividedPowers.RatAlgebra.dividedPowers_unique {R : Type u_1} [CommSemiring R] {I : Ideal R} [DecidablePred fun (x : R) => x I] [Algebra R] (hI : DividedPowers I) :

                There are no other divided power structures on an ideal of a -algebra.