Smallness properties of modules and algebras #
instance
Submodule.small_sup
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{P Q : Submodule R M}
[smallP : Small.{u, u_2} ↥P]
[smallQ : Small.{u, u_2} ↥Q]
:
Small.{u, u_2} ↥(P ⊔ Q)
instance
Submodule.instSemilatticeSupSubtypeSmallMem
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
SemilatticeSup { P : Submodule R M // Small.{u, u_2} ↥P }
Equations
- Submodule.instSemilatticeSupSubtypeSmallMem = SemilatticeSup.mk (fun (P Q : { P : Submodule R M // Small.{?u.43, ?u.41} ↥P }) => ⟨↑P ⊔ ↑Q, ⋯⟩) ⋯ ⋯ ⋯
instance
Submodule.instInhabitedSubtypeSmallMem
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
Equations
- Submodule.instInhabitedSubtypeSmallMem = { default := ⟨⊥, ⋯⟩ }
instance
Submodule.small_iSup
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{ι : Type u_3}
{P : ι → Submodule R M}
[Small.{u, u_3} ι]
[∀ (i : ι), Small.{u, u_2} ↥(P i)]
:
Small.{u, u_2} ↥(iSup P)
theorem
Submodule.FG.small
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Small.{u, u_1} R]
(P : Submodule R M)
(hP : P.FG)
:
theorem
Module.Finite.small
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Small.{u, u_1} R]
[Module.Finite R M]
:
instance
Submodule.small_span_singleton
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Small.{u, u_1} R]
(m : M)
:
Small.{u, u_2} ↥(span R {m})
theorem
Submodule.small_span
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Small.{u, u_1} R]
(s : Set M)
[Small.{u, u_2} ↑s]
:
Small.{u, u_2} ↥(span R s)
instance
Algebra.small_adjoin
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[Small.{u, u_1} R]
{s : Set S}
[Small.{u, u_2} ↑s]
:
Small.{u, u_2} ↥(adjoin R s)
theorem
Subalgebra.FG.small
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[Small.{u, u_1} R]
{A : Subalgebra R S}
(fgS : A.FG)
:
theorem
Algebra.FiniteType.small
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[Small.{u, u_1} R]
[FiniteType R S]
: