Documentation

Mathlib.RingTheory.Finiteness.Small

Smallness properties of modules and algebras #

instance Submodule.small_sup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {P Q : Submodule R M} [smallP : Small.{u, u_2} P] [smallQ : Small.{u, u_2} Q] :
instance Submodule.small_iSup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_3} {P : ιSubmodule R M} [Small.{u, u_3} ι] [∀ (i : ι), Small.{u, u_2} (P i)] :
theorem Submodule.FG.small {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] [Small.{u, u_1} R] (P : Submodule R M) (hP : P.FG) :
instance Submodule.small_span_singleton {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] [Small.{u, u_1} R] (m : M) :
theorem Submodule.small_span {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] [Small.{u, u_1} R] (s : Set M) [Small.{u, u_2} s] :
instance Algebra.small_adjoin {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] [Small.{u, u_1} R] {s : Set S} [Small.{u, u_2} s] :
theorem Subalgebra.FG.small {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] [Small.{u, u_1} R] {A : Subalgebra R S} (fgS : A.FG) :