Documentation

Mathlib.RingTheory.GradedAlgebra.Homogeneous.Subsemiring

Homogeneous subsemirings of a graded semiring #

This file defines homogeneous subsemirings of a graded semiring, as well as operations on them.

Main definitions #

theorem DirectSum.SetLike.IsHomogeneous.mem_iff {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] {R : Subsemiring A} (hR : IsHomogeneous ๐’œ R) {a : A} :
a โˆˆ R โ†” โˆ€ (i : ฮน), โ†‘(((decompose ๐’œ) a) i) โˆˆ R
structure HomogeneousSubsemiring {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] extends Subsemiring A :
Type u_3

A HomogeneousSubsemiring is a Subsemiring that satisfies IsHomogeneous.

Instances For
    theorem HomogeneousSubsemiring.toSubsemiring_injective {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] :
    instance HomogeneousSubsemiring.setLike {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] :
    Equations
    theorem HomogeneousSubsemiring.isHomogeneous {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] (R : HomogeneousSubsemiring ๐’œ) :
    instance HomogeneousSubsemiring.subsemiringClass {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] :
    theorem HomogeneousSubsemiring.ext {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {R S : HomogeneousSubsemiring ๐’œ} (h : R.toSubsemiring = S.toSubsemiring) :
    R = S
    theorem HomogeneousSubsemiring.ext_iff {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {R S : HomogeneousSubsemiring ๐’œ} :
    theorem HomogeneousSubsemiring.ext' {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {R S : HomogeneousSubsemiring ๐’œ} (h : โˆ€ (i : ฮน), โˆ€ a โˆˆ ๐’œ i, a โˆˆ R โ†” a โˆˆ S) :
    R = S
    @[simp]
    theorem HomogeneousSubsemiring.mem_iff {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {R : HomogeneousSubsemiring ๐’œ} {a : A} :
    theorem IsHomogeneous.subsemiringClosure {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {s : Set A} (h : โˆ€ (i : ฮน) โฆƒx : Aโฆ„, x โˆˆ s โ†’ โ†‘(((DirectSum.decompose ๐’œ) x) i) โˆˆ s) :
    theorem IsHomogeneous.subsemiringClosure_of_isHomogeneousElem {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] {๐’œ : ฮน โ†’ ฯƒ} [DecidableEq ฮน] [GradedRing ๐’œ] {s : Set A} (h : โˆ€ x โˆˆ s, SetLike.IsHomogeneousElem ๐’œ x) :
    def Subsemiring.homogeneousCore {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] (R : Subsemiring A) :

    For any subsemiring R, not necessarily homogeneous, R.homogeneousCore ๐’œ is the largest homogeneous subsemiring contained in R.

    Equations
    Instances For
      theorem Subsemiring.homogeneousCore_mono {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] :
      theorem Subsemiring.toSubsemiring_homogeneousCore_le {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] (R : Subsemiring A) :
      theorem Subsemiring.isHomogeneous_iff_forall_subset {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] (R : Subsemiring A) :
      DirectSum.SetLike.IsHomogeneous ๐’œ R โ†” โˆ€ (i : ฮน), โ†‘R โІ โ‡‘(GradedRing.proj ๐’œ i) โปยน' โ†‘R
      theorem Subsemiring.isHomogeneous_iff_subset_iInter {ฮน : Type u_1} {ฯƒ : Type u_2} {A : Type u_3} [AddMonoid ฮน] [Semiring A] [SetLike ฯƒ A] [AddSubmonoidClass ฯƒ A] (๐’œ : ฮน โ†’ ฯƒ) [DecidableEq ฮน] [GradedRing ๐’œ] (R : Subsemiring A) :
      DirectSum.SetLike.IsHomogeneous ๐’œ R โ†” โ†‘R โІ โ‹‚ (i : ฮน), โ‡‘(GradedRing.proj ๐’œ i) โปยน' โ†‘R