Cardinality of Hahn series #
We define HahnSeries.cardSupp as the cardinality of the support of a Hahn series, and find bounds
for the cardinalities of different operations.
Todo #
- Bound the cardinality of the inverse.
- Build the subgroups, subrings, etc. of Hahn series with support less than a given infinite cardinal.
Cardinality function #
def
HahnSeries.cardSupp
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(x : HahnSeries Γ R)
:
The cardinality of the support of a Hahn series.
Equations
- x.cardSupp = Cardinal.mk ↑x.support
Instances For
theorem
HahnSeries.cardSupp_congr
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
{x : HahnSeries Γ R}
{y : HahnSeries Γ S}
(h : x.support = y.support)
:
theorem
HahnSeries.cardSupp_mono
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
{x : HahnSeries Γ R}
{y : HahnSeries Γ S}
(h : x.support ⊆ y.support)
:
@[simp]
theorem
HahnSeries.cardSupp_single_of_ne
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(a : Γ)
{r : R}
(h : r ≠ 0)
:
theorem
HahnSeries.cardSupp_single_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
(a : Γ)
(r : R)
:
theorem
HahnSeries.cardSupp_map_le
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
[Zero S]
(x : HahnSeries Γ R)
(f : ZeroHom R S)
:
theorem
HahnSeries.cardSupp_truncLT_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[Zero R]
[DecidableLT Γ]
(x : HahnSeries Γ R)
(c : Γ)
:
theorem
HahnSeries.cardSupp_smul_le
{Γ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[PartialOrder Γ]
[Zero R]
(s : S)
(x : HahnSeries Γ R)
[SMulZeroClass S R]
:
theorem
HahnSeries.cardSupp_neg_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[NegZeroClass R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_add_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddMonoid R]
(x y : HahnSeries Γ R)
:
@[simp]
theorem
HahnSeries.cardSupp_neg
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddGroup R]
(x : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_sub_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddGroup R]
(x y : HahnSeries Γ R)
:
theorem
HahnSeries.cardSupp_mul_le
{Γ : Type u_1}
{R : Type u_2}
[PartialOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[NonUnitalNonAssocSemiring R]
(x y : HahnSeries Γ R)
: