Minimal primes and localization #
We provide various results concerning the minimal primes above an ideal that needs the theory of localizations
Main results #
Ideal.exists_minimalPrimes_comap_eq
Ifp
is a minimal prime overf ⁻¹ I
, then it is the preimage of some minimal prime overI
.Ideal.minimalPrimes_eq_comap
: The minimal primes overI
are precisely the preimages of minimal primes ofR ⧸ I
.Localization.AtPrime.prime_unique_of_minimal
: When localizing at a minimal prime idealI
, the resulting ring only has a single prime ideal.
theorem
Ideal.exists_mul_mem_of_mem_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{I p : Ideal R}
(hp : p ∈ I.minimalPrimes)
{x : R}
(hx : x ∈ p)
:
theorem
Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes
{R : Type u_1}
[CommSemiring R]
{p : Ideal R}
(hp : p ∈ minimalPrimes R)
:
Disjoint ↑p ↑(nonZeroDivisors R)
minimal primes are contained in zero divisors.
theorem
Ideal.exists_comap_eq_of_mem_minimalPrimes_of_injective
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Ideal R)
(H : p ∈ minimalPrimes R)
:
theorem
Ideal.exists_minimalPrimes_comap_eq
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{I : Ideal S}
(f : R →+* S)
(p : Ideal R)
(H : p ∈ (comap f I).minimalPrimes)
:
∃ p' ∈ I.minimalPrimes, comap f p' = p
theorem
Ideal.minimal_primes_comap_of_surjective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : Function.Surjective ⇑f)
{I J : Ideal S}
(h : J ∈ I.minimalPrimes)
:
theorem
Ideal.comap_minimalPrimes_eq_of_surjective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : Function.Surjective ⇑f)
(I : Ideal S)
:
theorem
IsLocalization.AtPrime.prime_unique_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{S : Type u_2}
[CommSemiring S]
[Algebra R S]
[IsLocalization.AtPrime S I]
{J K : Ideal S}
[J.IsPrime]
[K.IsPrime]
:
theorem
Localization.AtPrime.prime_unique_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
(J : Ideal (Localization I.primeCompl))
[J.IsPrime]
:
theorem
Localization.AtPrime.nilpotent_iff_mem_maximal_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{x : Localization I.primeCompl}
:
theorem
Localization.AtPrime.nilpotent_iff_not_unit_of_minimal
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
[hI : I.IsPrime]
(hMin : I ∈ minimalPrimes R)
{x : Localization I.primeCompl}
: