Module version of Chinese remainder theorem #
theorem
Ideal.pi_mkQ_rTensor
{R : Type u_1}
[CommRing R]
{ι : Type u_2}
(M : Type u_3)
[AddCommGroup M]
[Module R M]
(I : ι → Ideal R)
[Fintype ι]
[DecidableEq ι]
:
LinearMap.rTensor M (LinearMap.pi fun (i : ι) => Submodule.mkQ (I i)) = ↑(TensorProduct.piLeft R M fun (i : ι) => R ⧸ I i).symm ∘ₗ (LinearMap.pi fun (i : ι) => (TensorProduct.mk R (R ⧸ I i) M) 1) ∘ₗ ↑(TensorProduct.lid R M)
theorem
Ideal.pi_tensorProductMk_quotient_surjective
{R : Type u_1}
[CommRing R]
{ι : Type u_2}
(M : Type u_3)
[AddCommGroup M]
[Module R M]
(I : ι → Ideal R)
(hI : Pairwise (Function.onFun IsCoprime I))
[Finite ι]
:
Function.Surjective ⇑(LinearMap.pi fun (i : ι) => (TensorProduct.mk R (R ⧸ I i) M) 1)
A form of Chinese remainder theorem for modules, part I: if ideals Iᵢ of R are pairwise
coprime, then for any R-module M, the natural map M → Πᵢ (R ⧸ Iᵢ) ⊗[R] M is surjective.
theorem
Ideal.ker_tensorProductMk_quotient
{R : Type u_1}
[CommRing R]
{ι : Type u_2}
(M : Type u_3)
[AddCommGroup M]
[Module R M]
(I : ι → Ideal R)
(hI : Pairwise (Function.onFun IsCoprime I))
[Finite ι]
:
LinearMap.ker (LinearMap.pi fun (i : ι) => (TensorProduct.mk R (R ⧸ I i) M) 1) = (⨅ (i : ι), I i) • ⊤
A form of Chinese remainder theorem for modules, part II: if ideals Iᵢ of R are pairwise
coprime, then for any R-module M, the kernel of M → Πᵢ (R ⧸ Iᵢ) ⊗[R] M equals (⋂ᵢ Iᵢ) • M.