Documentation

Mathlib.RingTheory.Ideal.Quotient.Index

Indices of ideals #

Main result #

theorem Submodule.finite_quotient_smul {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) {N : Submodule R M} [Finite (R I)] [Finite (M N)] (hN : N.FG) :
Finite (M I N)

Let N be a finite index f.g. R-submodule, and I be a finite index ideal. Then I • N also has finite index.

theorem Submodule.index_smul_le {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) {N : Submodule R M} [Finite (R I)] (s : Finset M) (hs : span R s = N) :
theorem Ideal.finite_quotient_pow {R : Type u_1} [CommRing R] {I : Ideal R} (hI : I.FG) [Finite (R I)] (n : ) :
Finite (R I ^ n)
theorem Ideal.index_pow_le {R : Type u_1} [CommRing R] {I : Ideal R} (s : Finset R) (hs : span s = I) [Finite (R I)] (n : ) :