More operations on modules and ideals related to quotients #
The induced map from the quotient by the kernel to the codomain.
This is an isomorphism if f
has a right inverse (quotientKerEquivOfRightInverse
) /
is surjective (quotientKerEquivOfSurjective
).
Instances For
The first isomorphism theorem for commutative rings, computable version.
Instances For
The first isomorphism theorem for commutative rings.
Instances For
See also Ideal.mem_quotient_iff_mem
in case I ≤ J
.
See also Ideal.mem_quotient_iff_mem_sup
if the assumption I ≤ J
is not available.
The R₁
-algebra structure on A/I
for an R₁
-algebra A
The canonical morphism A →ₐ[R₁] I.quotient
is surjective.
The kernel of A →ₐ[R₁] I.quotient
is I
.
The induced algebras morphism from the quotient by the kernel to the codomain.
This is an isomorphism if f
has a right inverse (quotientKerAlgEquivOfRightInverse
) /
is surjective (quotientKerAlgEquivOfSurjective
).
Instances For
The first isomorphism theorem for algebras, computable version.
Instances For
The first isomorphism theorem for algebras.
Instances For
H
and h
are kept as separate hypothesis since H is used in constructing the quotient map.
If we take J = I.comap f
then QuotientMap
is injective automatically.
Commutativity of a square is preserved when taking quotients by an ideal.
The algebra hom A/I →+* B/J
induced by an algebra hom f : A →ₐ[R₁] B
with I ≤ f⁻¹(J)
.
Instances For
The algebra equiv A/I ≃ₐ[R] B/J
induced by an algebra equiv f : A ≃ₐ[R] B
,
whereJ = f(I)
.
Instances For
The kernel of quotLeftToQuotSup
The ring homomorphism (R/I)/J' -> R/(I ⊔ J)
induced by quotLeftToQuotSup
where J'
is the image of J
in R/I
Instances For
The kernel of quotQuotMk
The ring homomorphism R/(I ⊔ J) → (R/I)/J'
induced by quotQuotMk
Instances For
quotQuotToQuotSup
and liftSupQuotQuotMk
are inverse isomorphisms. In the case where
I ≤ J
, this is the Third Isomorphism Theorem (see quotQuotEquivQuotOfLe
)
Instances For
The obvious isomorphism (R/I)/J' → (R/J)/I'
Instances For
The Third Isomorphism theorem for rings. See quotQuotEquivQuotSup
for a version
that does not assume an inclusion of ideals.
Instances For
The algebra homomorphism (A / I) / J' -> A / (I ⊔ J)
induced by quotQuotToQuotSup
,
where J'
is the projection of J
in A / I
.
Instances For
The composition of the algebra homomorphisms A → (A / I)
and (A / I) → (A / I) / J'
,
where J'
is the projection J
in A / I
.
Instances For
The injective algebra homomorphism A / (I ⊔ J) → (A / I) / J'
induced by quot_quot_mk
,
where J'
is the projection J
in A / I
.
Instances For
quotQuotToQuotSup
and liftSupQuotQuotMk
are inverse isomorphisms. In the case where
I ≤ J
, this is the Third Isomorphism Theorem (see DoubleQuot.quotQuotEquivQuotOfLE
).
Instances For
The natural algebra isomorphism (A / I) / J' → (A / J) / I'
,
where J'
(resp. I'
) is the projection of J
in A / I
(resp. I
in A / J
).
Instances For
The third isomorphism theorem for algebras. See quotQuotEquivQuotSupₐ
for version
that does not assume an inclusion of ideals.