Ideals in polynomial rings #
theorem
Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
{R : Type u_1}
[CommRing R]
{a : R}
{b : Polynomial R}
{P : Polynomial (Polynomial R)}
:
P ∈ Ideal.span {Polynomial.C (Polynomial.X - Polynomial.C a), Polynomial.X - Polynomial.C b} ↔ Polynomial.eval a (Polynomial.eval b P) = 0
theorem
Polynomial.ker_evalRingHom
{R : Type u_1}
[CommRing R]
(x : R)
:
RingHom.ker (Polynomial.evalRingHom x) = Ideal.span {Polynomial.X - Polynomial.C x}
@[simp]
theorem
Polynomial.ker_modByMonicHom
{R : Type u_1}
[CommRing R]
{q : Polynomial R}
(hq : q.Monic)
:
LinearMap.ker q.modByMonicHom = Submodule.restrictScalars R (Ideal.span {q})
theorem
Algebra.mem_ideal_map_adjoin
{R : Type u_2}
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
(I : Ideal R)
{y : ↥(Algebra.adjoin R {x})}
:
y ∈ Ideal.map (algebraMap R ↥(Algebra.adjoin R {x})) I ↔ ∃ (p : Polynomial R), (∀ (i : ℕ), p.coeff i ∈ I) ∧ (Polynomial.aeval x) p = ↑y