Documentation

Mathlib.RingTheory.Polynomial.Pochhammer

The Pochhammer polynomials #

We define and prove some basic relations about ascPochhammer S n : S[X] := X * (X + 1) * ... * (X + n - 1) which is also known as the rising factorial and about descPochhammer R n : R[X] := X * (X - 1) * ... * (X - n + 1) which is also known as the falling factorial. Versions of this definition that are focused on Nat can be found in Data.Nat.Factorial as Nat.ascFactorial and Nat.descFactorial.

Implementation #

As with many other families of polynomials, even though the coefficients are always in or , we define the polynomial with coefficients in any [Semiring S] or [Ring R]. In an integral domain S, we show that ascPochhammer S n is zero iff n is a sufficiently large non-positive integer.

TODO #

There is lots more in this direction:

noncomputable def ascPochhammer (S : Type u) [Semiring S] :

ascPochhammer S n is the polynomial X * (X + 1) * ... * (X + n - 1), with coefficients in the semiring S.

Equations
Instances For
    theorem ascPochhammer_map {S : Type u} [Semiring S] {T : Type v} [Semiring T] (f : RingHom S T) (n : Nat) :
    theorem ascPochhammer_eval₂ {S : Type u} [Semiring S] {T : Type v} [Semiring T] (f : RingHom S T) (n : Nat) (t : T) :
    theorem ascPochhammer_eval_zero (S : Type u) [Semiring S] {n : Nat} :
    Eq (Polynomial.eval 0 (ascPochhammer S n)) (ite (Eq n 0) 1 0)
    theorem ascPochhammer_ne_zero_eval_zero (S : Type u) [Semiring S] {n : Nat} (h : Ne n 0) :
    theorem ascPochhammer_pos {S : Type u_1} [StrictOrderedSemiring S] (n : Nat) (s : S) (h : LT.lt 0 s) :
    noncomputable def descPochhammer (R : Type u) [Ring R] :

    descPochhammer R n is the polynomial X * (X - 1) * ... * (X - n + 1), with coefficients in the ring R.

    Equations
    Instances For
      theorem descPochhammer_zero (R : Type u) [Ring R] :
      theorem descPochhammer_map {R : Type u} [Ring R] {T : Type v} [Ring T] (f : RingHom R T) (n : Nat) :
      theorem descPochhammer_eval_zero (R : Type u) [Ring R] {n : Nat} :
      Eq (Polynomial.eval 0 (descPochhammer R n)) (ite (Eq n 0) 1 0)
      theorem descPochhammer_ne_zero_eval_zero (R : Type u) [Ring R] {n : Nat} (h : Ne n 0) :
      theorem ascPochhammer_eval_neg_coe_nat_of_lt {R : Type u} [Ring R] {n k : Nat} (h : LT.lt k n) :

      The Pochhammer polynomial of degree n has roots at 0, -1, ..., -(n - 1).

      theorem ascPochhammer_eval_eq_zero_iff {R : Type u} [Ring R] [IsDomain R] (n : Nat) (r : R) :
      Iff (Eq (Polynomial.eval r (ascPochhammer R n)) 0) (Exists fun (k : Nat) => And (LT.lt k n) (Eq k.cast (Neg.neg r)))

      Over an integral domain, the Pochhammer polynomial of degree n has roots only at 0, -1, ..., -(n - 1).

      theorem descPochhammer_eval_coe_nat_of_lt {R : Type u} [Ring R] {k n : Nat} (h : LT.lt k n) :

      descPochhammer R n is 0 for 0, 1, …, n-1.

      theorem descPochhammer_eval_eq_prod_range {R : Type u_1} [CommRing R] (n : Nat) (r : R) :
      theorem descPochhammer_pos {S : Type u_1} [StrictOrderedRing S] {n : Nat} {s : S} (h : LT.lt (HSub.hSub n.cast 1) s) :

      descPochhammer S n is positive on (n-1, ∞).

      theorem descPochhammer_nonneg {S : Type u_1} [StrictOrderedRing S] {n : Nat} {s : S} (h : LE.le (HSub.hSub n.cast 1) s) :

      descPochhammer S n is nonnegative on [n-1, ∞).

      descPochhammer S n is at least (s-n+1)^n on [n-1, ∞).

      descPochhammer S n is monotone on [n-1, ∞).